
© Copyright reserved

© Copyright reserved

LAB CONTINUE

© Copyright reserved

LAB CONFIG

• We will continue prepping our lab environment

• For sanity, the lab has been reinitialised using a predefined
username and password…..chances are you already forgot
the username and password

• Log in to the Jump host:
ssh usrXX@cloud.examplesdomain.com -p 2200
Password: Your_Password_From_The_Events_Page

© Copyright reserved

LAB CONFIG

• Open a second PowerShell/PuTTY/Tabby/SSH Terminal

• Log in to the Jump host:
ssh usrXX@cloud.examplesdomain.com -p 2200
Password: Your_Password_From_The_Events_Page

FROM THIS SESSION IN THE JUMP NODE

• Log in to your HN:
ssh ern_admin@10.200.0.1XX

Username: ern_admin
Password: Leggings:Nutcase:Daybed:Cut3:Gradation

© Copyright reserved

© Copyright reserved

WRITING BASH SCRIPTS

© Copyright reserved

EXECUTING SCRIPTS

• A bash script is essentially only a few commands that are executed
one after the other

• The first line should start by defining the shell that is used:
#!/bin/bash
#The above line is also known as a shebang

• After the file has been created, it can be made executable by changing the
file permission:
chmod ugo+x my_script

• The file extension does not matter, but sometimes users will add the ".sh"
extension to the filename

• To execute a script (after chmod has been executed at some stage):
./my_script

or
sh my_script

Don’t be passive; execute the commands in a terminal

© Copyright reserved

BASH SCRIPTS CONTENT

• As mentioned, the first line in a bash script should define the shell to be used. You will
notice that it starts with a #

• In a script, anything after a # is seen as a comment
– There are some cases, like in the first line of a bash script (shebang), where the

comment has meaning to the interpreter.
– Another instance of "special comments" is for PBS jobs:

#PBS -n TestJob
#PBS -l walltime=300:00:00

• If (for formatting reasons) you want to continue a command on the next line, you can
use a "\" followed by nothing other than an enter/line break:

./configure \
--prefix=/usr/local \
--with-ssl

• The above command will be interpreted as a single command:
./configure --prefix=/usr/local --with-ssl

It is essential not to have a space after the \
Otherwise, the space is escaped and not the new line character as intended

© Copyright reserved

ENVIRONMENT VARIABLES

• Environmental variables can be used inside the script
• Environmental variables declared in the shell (the same

terminal session) before the script is executed can also be
addressed

• Parameters can be parsed to the script when it is executed:
./my_script parameter1 parameter2

• A variable is declared, and the value is assigned as follows:
myName="Albert" Special

Variables Description

$0 Name of the script

$1 First Parameter parsed to script

$# Number of parameters parsed

$@ All parameters parsed to the script

$$ Process ID of the script

© Copyright reserved

TESTING

• Some tests can be done in, for example, an if statement:
[-e /home] && echo "/home exists"

• For more info:
man test

Expression Meaning

-d Is a directory

-e Exists (can be a file, directory or link)

-h File is a symbolic link

-x File/directory is executable

-eq Number is equal to

-ne Number is not equal

-gt Number is greater than

-ge Number is greater than or equal

© Copyright reserved

EXECUTING COMMANDS INSIDE A SCRIPT

• You can execute a command within another command
• The old format used to be:

echo "The date today is: `date +%F` " #Character below ~
• The new format that should be used is:

echo "The date today is: $(date +%F) "

The output of the date command is parsed to the echo command
Another example is:

ls -l $(which yum)

Also, note the difference between the output of:
echo "The date today is: $(date +%F)"

AND
echo 'The date today is: $(date +%F)'

© Copyright reserved

IF & ELSE STATEMENTS

• Testing values (if statement)
• An "if" statement is closed by a "fi" statement (inverse of if)

if ["$USER" == "root"]; then
echo "You are running as root....."

fi
• It is important to have a space after "[" and before "]"
• An "if not" statement is written as:

if ! ["$USER" == "root"]; then
echo "Good, you are not root"

else
echo "Why are you root?"

fi

Note the space between the "!" and the "[", also note the use of
the double quotes that enclose the text variables

© Copyright reserved

IF STATEMENT OPERATORS

• If you want to test two match cases, the “and”
operator (&&) can be used:
i=8
if [[$i -gt 5 && $i -lt 12]]; then
 echo "The value '$i' is between 5 and 12"
fi

Note the additional “[“ at the beginning and the “]” at the end of the
statement for both the above and below statements.

• The or operator is || and used as follows:
if [[$today == "Saturday" || $today == "Sunday"]]; then
 echo "Today is a weekend"
else
 echo "Ugh, it is still not the weekend"
fi

© Copyright reserved

CASE STATEMENT

• The following case statement should be easy to interpret:

result=
you_selected=apple

case "$you_selected" in
"apple" | "banana" | "tomato")

result="a fruit"
;;

"cabbage" | "carrot")
result="a vegetable"
;;

*)
result="an unknown item"
;;

esac
echo "You have selected '$you_selected', which is $result"

© Copyright reserved

FOR LOOPS

• Looping through strings:
names="Mike John Peter Scott Anny"
for name in $names; do

echo "The name is: $name"
done

• Looping through numbers:
for i in $(seq -w 1 100); do

echo "Value: $i"
sleep 0.1

done

The -w option was given to the sequence (seq) command to make the
result automatically fit the same width (three characters):
001 002 … 008 009 010 … 099 100

© Copyright reserved

WHILE LOOPS

• A while loop should be used with caution, because an endless
loop can easily occur:

 j=5
 i=2
 while [$i -lt 10]; do
 i=$(($j + 1))
 echo "$(date) j=$j i=$i"
 done

• This while loop will run indefinitely because we set the value of
 i equal to 5 + 1 each iteration, without incrementing j

• Press Control+c to cancel out of the while loop

© Copyright reserved

WHILE LOOP

• A while loop can be used to read the content of a file
 line-by-line:

i=0
 while read current_line; do
 i=$(($i + 1))
 user=$(echo $current_line | sed "s|:.*||g")
 # The above sed command searches for the first : in the line
 # and removes the remainder of the line, only leaving the
 # username, eg: usr123:x:123:Example becomes usr123
 echo "Line $i: $user"
 done < /etc/passwd
 echo "The file /etc/passwd contains $i entries"

© Copyright reserved

BASIC MATH

• You can do some simple addition, multiplication etc:
income=5000
expenses=3250
myTotal=$((($income - $expenses) / 24))
echo "I should not be spending more than $myTotal per day"

• Or by using the basic calculator:
echo "400 * 2 / 5^2" | bc

• Incrementing the value of ”x" in a for loop:
x=0
for i in $(seq 1 50); do

[$i -gt 30] && ((x++)) #Reads: if i > 30 then increment x by 1
done
echo $x

© Copyright reserved

FUNCTIONS

function my_add()
{

first=$1
second=$2
result=$(($1 + $2))
echo $result

}

#Calling the function:
my_add 33 11

© Copyright reserved

RETURN VALUES

• The output/result of a command can be assigned to a variable:
 profile_files=$(ls /etc/profile.d)
 echo "The following profile files are executed upon login:"
 echo "$profile_files"

• The return (exit) code of a command is also very useful in scripts:
 rpm -q chrony
 result=$?
 if [$result -eq 0]; then
 echo "Chrony NTP is installed"
 else
 echo "Chrony NTP is not installed"
 fi

A zero (0) return code always indicates the command’s success
and a non-zero code indicates failure.

© Copyright reserved

HERE DOCUMENTS

• A here document is a file/document generated within a script/command. It is
almost like a template file that generates static or dynamic content:

 #This example will only work if you are the root user
 cat > /etc/profile.d/ufs.sh <<-EOF
 alias vi='vim '
 alias s='sudo -u - '
 alias l='ls -la --color '
 EOF

• The cat command redirects (>) the content to a file, until the EOF is the only
content in the line.

• If you want to append to an existing file, instead of writing
 cat > write cat >>

• A dash (-) is used in front of the EOF to ignore any indentation that may exist
in the script….only works inside scripts, not in the terminal.

© Copyright reserved

REGULAR EXPRESSIONS

• The grep command uses regular expressions (an expression that
defines a condition without specifically expressing the condition
statically).

• grep searches for text in a file or standard output

• Examples:
 #Return (-i = insensitive) occurrences of admin in a file:
 grep -i "admin" /etc/passwd

 #Return (-o = only the matching) IPv4 addresses in a file:
 grep -o "[0-9]*\.[0-9]*\.[0-9]*\.[0-9]*" /etc/hosts

 #View all the lines of text in a config file:
 sudo cat /etc/selinux/config

 #Show only lines that are not (-v) commented out:
 sudo cat /etc/selinux/config | grep -v "^#"

© Copyright reserved

REGULAR EXPRESSIONS

• The sed command can be used to change values using regular
expressions

 #Disable SELinux permanently (persistent after reboots):
sudo sed -i "s|^SELINUX=.*|SELINUX=disabled|g" /etc/selinux/config

The above command reads:
Search (s) for text starting (^) with SELINUX=, followed by any number
of characters (.*) and replace it with SELINUX=disabled globally (g)

Delete all empty lines from the same file:
 Definition of an empty line:
 An empty line is one beginning (^) with no content up to the
 ending ($) of the line:
cat /etc/selinux/config |wc -l #count the number of lines in the file
sed -i "/^$/d" /etc/selinux/config #The -i option = modify the file in place

cat /etc/selinux/config |wc -l #count the number of lines in the file again

© Copyright reserved

SCRIPTING EXECUTION SPEED MIGHT MATTER

• Medical Physics

• Script to transform a text file with 94 168 lines into a CSV file

Attempt 1: Just make it work. 77.37 minutes
Attempt 2: Adding needed arrays. 16.45 minutes
Attempt 3: Performing file formats. 8.97 minutes

© Copyright reserved

SCRIPTING EXERCISE

• Log in to the Jump host
ssh usrXX@cloud.examplesdomain.com -p 2200

In a second terminal (if you haven't created one yet):

• Log into the HN and become root
ssh ern_admin@10.200.0.1XX

Username: ern_admin
Password: Leggings:Nutcase:Daybed:Cut3:Gradation

You should now have two terminal sessions open
One: [usrXX@login ~]$
And the other: [ern_admin@usrXX-hn01 ~]$

© Copyright reserved

SCRIPTING EXERCISE

• Write a script (on the jump node) to install MySQL
– (which will later be executed on your HN)

• As a reference, use (link also on the events page as Install MySQL, under slides):

https://www.digitalocean.com/community/tutorials/how-to-install-mysql-on-centos-7

1. Define a variable MYSQL_PASS at the top of the script and set the root
user’s MySQL password to:
Percent-Gope-Dumping-Uninsured-Maybe4

2. Before continuing, the script should test to see if the short hostname is
usrXX-hn01 (Don’t hardcode your user number; test for numbers in that position)

3. The script should continue without ANY user intervention

Continue on next slide…..

https://www.digitalocean.com/community/tutorials/how-to-install-mysql-on-centos-7

© Copyright reserved

SCRIPTING EXERCISE

The script should perform the following, too:

4. Install MySQL as per Step 1 on the webpage. You can use the version (7-5) that is mentioned on the page itself.
Note that the site mistakenly executes the rpm -ivh against a different version (7-9) than the one downloaded using the curl
command. Either download version 7-9 or install the downloaded version (7-5), both will work for our purposes.

DON’T execute steps 3 and 4; we’ll do our own securing and testing hereon

5. Enable the MySQL service to start (now and) automatically after reboots

6. Read the value of the temporary password (last part of step 2 on the site) into a new variable temp_pass

7. Create a “here document” (secure_mysql.sql) with the following content:
UPDATE mysql.user SET Password=PASSWORD('$MYSQL_PASS') WHERE User='root';
DELETE FROM mysql.user WHERE User='root' AND Host NOT IN ('localhost', '127.0.0.1', '::1');
DELETE FROM mysql.user WHERE User='';
DELETE FROM mysql.db WHERE Db='test' OR Db='test_%';
FLUSH PRIVILEGES;
END OF DOCUMENT ← Don’t add this line to the document itself

The value of the MYSQL_PASS variable should be written to the file, not the referenced name.

Continue on next slide…..

© Copyright reserved

SCRIPTING EXERCISE

8. Create another here document (~/.my.cnf) with the content:
[mysql]
user=root
password=$temp_pass
END OF DOCUMENT ← Don’t add this line to the document itself

9. Execute the mysql command with an additional parameter
(--connect-expired-password), and redirect the file (secure_mysql.sql) to the command

10. If the above command was successful, delete the secure_mysql.sql file

11. Using a regular expression, change the password in the (~/.my.cnf) file to the value of
MYSQL_PASS

12. Execute the following command; you should not be prompted for a password:
mysql -e "SELECT Host, User from mysql.user;"

© Copyright reserved

SCRIPTING EXERCISE

• Study a shell script such as /etc/profile and the one created
• See if you can understand what is happening in said scripts
• Practice writing your own scripts
• Copy your scripts somewhere where you can access them later

• Writing (and keeping) installation scripts for the applications
discussed in these sessions is highly recommended

