LAB CONTINUE

UNIVERSITY OF THE
FREE STATE
UNIVERSITEIT VAN DIE
VRYSTAAT
YUNIVESITHI YA
FREISTATA

LAB CONFIG

* We will continue prepping our lab environment

« For sanity, the lab has been reinitialised using a predefined
username and password.....chances are you already forgot
the username and password

* Log in to the Jump host:
ssh usrXX@cloud.examplesdomain.com -p 2200
Password: Your_Password From_The Events Page

LAB CONFIG

 Open a second PowerShell/PuTTY/Tabby/SSH Terminal

* Log in to the Jump host:
ssh usrXX@cloud.examplesdomain.com -p 2200
Password: Your Password From_The Events Page

FROM THIS SESSION IN THE JUMP NODE

 Log in to your HN:
ssh ern_admin@10.200.0.1XX

Username: ern_admin
Password: Leggings:Nutcase:Daybed:Cut3:Gradation

@UFS

WRITING BASH SCRIPTS

UNIVERSITY OF THE
FREE STATE
UNIVERSITEIT VAN DIE
VRYSTAAT
YUNIVESITHI YA
FREISTATA

EXECUTING SCRIPTS

A bash script is essentially only a few commands that are executed
one after the other

* The first line should start by defining the shell that is used:
#!/bin/bash
#The above line is also known as a shebang

» After the file has been created, it can be made executable by changing the
file permission:

chmod ugo+x my_script

 The file extension does not matter, but sometimes users will add the ".sh"
extension to the filename

« To execute a script (after chmod has been executed at some stage):
Jmy_script
or
sh my_script

Don’t be passive; execute the commands in a terminal @UFS

BASH SCRIPTS CONTENT

* As mentioned, the first line in a bash script should define the shell to be used. You will
notice that it starts with a #

* In a script, anything after a # is seen as a comment

— There are some cases, like in the first line of a bash script (shebang), where the
comment has meaning to the interpreter.

— Another instance of "special comments" is for PBS jobs:
#PBS -n TestJob
#PBS -l walltime=300:00:00

« If (for formatting reasons) you want to continue a command on the next line, you can
use a "\" followed by nothing other than an enter/line break:

Jconfigure \
--prefix=/usr/local \
--with-ssl

 The above command will be interpreted as a single command:
Jconfigure --prefix=/usr/local --with-ssl

It is essential not to have a space after the \
Otherwise, the space is escaped and not the new line character as intended

@UFS

ENVIRONMENT VARIABLES

 Environmental variables can be used inside the script

* Environmental variables declared in the shell (the same
terminal session) before the script is executed can also be
addressed

 Parameters can be parsed to the script when it is executed:
Imy_script parameter1 parameter2
« Avariable is declared, and the value is assigned as follows:

myName="Albert" i
Special Description
Variables i

SO Name of the script

S1 First Parameter parsed to script

St Number of parameters parsed

S@ All parameters parsed to the script

SS Process ID of the script

TESTING

 Some tests can be done in, for example, an if statement:
[-e /home] && echo "/home exists"

I

Is a directory

-e Exists (can be a file, directory or link)
-h File is a symbolic link

-X File/directory is executable

-eq Number is equal to

-ne Number is not equal

-gt Number is greater than

-ge Number is greater than or equal

e For more info:
man test

EXECUTING COMMANDS INSIDE A SCRIPT

* You can execute a command within another command

« The old format used to be:
echo "The date today is: ‘date +%F " #Character below ~

 The new format that should be used is:
echo "The date today is: $(date +%F) "

The output of the date command is parsed to the echo command
Another example is:
Is -l $(which yum)

Also, note the difference between the output of:

echo "The date today is: $(date +%F)"
AND

echo 'The date today is: $(date +%F)'

IF & ELSE STATEMENTS

Testing values (if statement)

An "if" statement is closed by a "fi" statement (inverse of if)
if ["SUSER" == "root"]; then

echo "You are running as root.....

fi
It is important to have a space after "[" and before "]"
An "if not" statement is written as:
if 1 ["SUSER" == "root"]; then
echo "Good, you are not root"

else
echo "Why are you root?"

fi

Note the space between the "I" and the "[", also note the use of
the double quotes that enclose the text variables

@UFS

IF STATEMENT OPERATORS

If you want to test two match cases, the “and”
operator (&&) can be used:
=8
if [[$i -gt 5 && $i -It 12]]; then
echo "The value '$i' is between 5 and 12"
fi

Note the additional “[* at the beginning and the “]” at the end of the
statement for both the above and below statements.

The or operator is || and used as follows:
if [[$today == "Saturday" || $today == "Sunday"]]; then
echo "Today is a weekend"
else
echo "Ugh, it is still not the weekend"
fi

CASE STATEMENT

« The following case statement should be easy to interpret:

result=
you_selected=apple

case "$you_selected” in
"apple"” | "banana” | "tomato")
result="a fruit"

"cabbage" | "carrot")
result="a vegetable"

)
*)
result="an unknown item"

LR

esac
echo "You have selected '$you_selected’, which is $result”

FOR LOOPS

* Looping through strings:
names="Mike John Peter Scott Anny"
for name in $names; do
echo "The name is: $name"
done

* Looping through numbers:
foriin $(seq -w 1 100); do
echo "Value: $i"
sleep 0.1
done

The -w option was given to the sequence (seq) command to make the
result automatically fit the same width (three characters):

001 002 ... 008 009 010 ... 099 100

WHILE LOOPS

* A while loop should be used with caution, because an endless
loop can easily occur:

J=5
i=2
while [$i -1t 10]; do
i=$(($j + 1))
echo "$(date) j=9$j ii=%i"
done

« This while loop will run indefinitely because we set the value of
i equal to 5 + 1 each iteration, without incrementing |

* Press Control+c to cancel out of the while loop

WHILE LOOP

* A while loop can be used to read the content of a file
line-by-line:

1=0

while read current_line; do
i=5(($i + 1))
user=%(echo $current_line | sed "s|:.*||g")
The above sed command searches for the first : in the line
and removes the remainder of the line, only leaving the
username, eg: usr123:x:123:Example becomes usr123
echo "Line $i: $user"

done < /etc/passwd

echo "The file /etc/passwd contains $i entries"

BASIC MATH

* You can do some simple addition, multiplication etc:
income=5000
expenses=3250
myTotal=$((($income - $expenses) / 24))
echo "l should not be spending more than $myTotal per day"

* Or by using the basic calculator:
echo "400 * 2 /52" | bc

* Incrementing the value of "x" in a for loop:
x=0
foriin $(seq 1 50); do
[$i -gt 30] && ((x++)) #Reads: if i > 30 then increment x by 1
done
echo $x

FUNCTIONS

function my_add()

{
first=%$1
second=%$2
result=%(($1 + $2))
echo $result

#Calling the function:
my_add 33 11

RETURN VALUES

« The output/result of a command can be assigned to a variable:
profile files=$(Is /etc/profile.d)
echo "The following profile files are executed upon login:"
echo "$profile files"

* The return (exit) code of a command is also very useful in scripts:
rom -g chrony
result=$?
if [$result -eq 0]; then
echo "Chrony NTP is installed™
else
echo "Chrony NTP is not installed”
fi

A zero (0) return code always indicates the command’s success
and a non-zero code indicates failure.
NP uFs

HERE DOCUMENTS

A here document is a file/document generated within a script/command. It is
almost like a template file that generates static or dynamic content:

#This example will only work if you are the root user
cat > /etc/profile.d/ufs.sh <<-EOF

alias vi='vim'

alias s='sudo -u -'

alias I="ls -la --color’

EOF

The cat command redirects (>) the content to a file, until the EOF is the only
content in the line.

If you want to append to an existing file, instead of writing
cat > write cat>>

A dash (-) is used in front of the EOF to ignore any indentation that may exist
in the script....only works inside scripts, not in the terminal.

@UFS

REGULAR EXPRESSIONS

 The grep command uses regular expressions (an expression that
defines a condition without specifically expressing the condition
statically).

« grep searches for text in a file or standard output

« Examples:

#Return (-i = insensitive) occurrences of admin in a file:
grep -i "admin" /etc/passwd

#Return (-o = only the matching) IPv4 addresses in a file:
grep -o "[0-9]*\.[0-9]*\.[0-9]*\.[0-9]*" /etc/hosts

#View all the lines of text in a config file:
sudo cat /etc/selinux/config

#Show only lines that are not (-v) commented out:
sudo cat /etc/selinux/config | grep -v "A#"

@UFS

REGULAR EXPRESSIONS

« The sed command can be used to change values using regular
expressions

#Disable SELinux permanently (persistent after reboots):
sudo sed -i "s|*SELINUX=.*|SELINUX=disabled|g" /etc/selinux/config

The above command reads:

Search (s) for text starting (*) with SELINUX=, followed by any number
of characters (.*) and replace it with SELINUX=disabled globally (g)

Delete all empty lines from the same file:
Definition of an empty line:
An emptg)line is one beginning (*) with no content up to the

ending (9) of the line:
cat /etclselinux/config |WC -l #count the number of lines in the file
sed -i "/A$/d" /etclselinux/config #The -i option = modify the file in place
cat /etclselinux/config |WC -l #count the number of lines in the file again

@UFS

SCRIPTING EXECUTION SPEED MIGHT MATTER

 Medical Physics

« Script to transform a text file with 94 168 lines into a CSV file
Attempt 1: Just make it work. 77.37 minutes

Attempt 2: Adding needed arrays. 16.45 minutes
Attempt 3: Performing file formats. 8.97 minutes

SCRIPTING EXERCISE

 Log in to the Jump host
ssh usrXX@cloud.examplesdomain.com -p 2200

In a second terminal (if you haven't created one yet):

 Log into the HN and become root
ssh ern_admin@10.200.0.1XX

Username: ern_admin
Password: Leggings:Nutcase:Daybed:Cut3:Gradation

You should now have two terminal sessions open

One: [usrXX@login ~]%
And the other: [ern_admin@usrXX-hn01 ~]%

SCRIPTING EXERCISE

« Write a script (on the jump node) to install MySQL
— (which will later be executed on your HN)

 Asa reference, USe (link also on the events page as Install MySQL, under slides):

https://www.digitalocean.com/community/tutorials/how-to-install-mysql-on-centos-7

1. Define a variable MYSQL_PASS at the top of the script and set the root
user’'s MySQL password to:

Percent-Gope-Dumping-Uninsured-Maybe4

2. Before continuing, the script should test to see if the short hostname is
usrXX-hn01 (Don’t hardcode your user number; test for numbers in that position)

3. The script should continue without ANY user intervention

Continue on next slide.....

@UFS

https://www.digitalocean.com/community/tutorials/how-to-install-mysql-on-centos-7

SCRIPTING EXERCISE

The script should perform the following, too:

4. Install MySQL as per Step 1 on the webpage. You can use the version (7-5) that is mentioned on the page itself.

Note that the site mistakenly executes the rpm -ivh against a different version (7-9) than the one downloaded using the curl
command. Either download version 7-9 or install the downloaded version (7-5), both will work for our purposes.

DON’T execute steps 3 and 4; we’ll do our own securing and testing hereon

5. Enable the MySQL service to start (now and) automatically after reboots
0. Read the value of the temporary password (last part of step 2 on the site) into a new variable temp_pass
7. Create a “here document” (secure_mysql.sql) with the following content:

UPDATE mysql.user SET Password=PASSWORD('$MYSQL_PASS') WHERE User="root';
DELETE FROM mysql.user WHERE User="root' AND Host NOT IN (‘localhost', '127.0.0.1', "::1");
DELETE FROM mysqgl.user WHERE User=";

DELETE FROM mysql.db WHERE Db='"test' OR Db="test_%";

FLUSH PRIVILEGES;

END OF DOCUMENT <« Don’t add this line to the document itself

The value of the MYSQL_PASS variable should be written to the file, not the referenced name.

Continue on next slide.....

SCRIPTING EXERCISE

10.

11.

12.

Create another here document (~/.my.cnf) with the content:
[mysql]

user=root

password=%temp_pass

END OF DOCUMENT <« Don’t add this line to the document itself

Execute the mysqgl command with an additional parameter
(--connect-expired-password), and redirect the file (secure_mysql.sql) to the command

If the above command was successful, delete the secure_mysql.sql file

Using a regular expression, change the password in the (~/.my.cnf) file to the value of
MYSQL_PASS

Execute the following command; you should not be prompted for a password:
mysql -e "SELECT Host, User from mysql.user;"

SCRIPTING EXERCISE

Study a shell script such as /etc/profile and the one created
See if you can understand what is happening in said scripts

Practice writing your own scripts
Copy your scripts somewhere where you can access them later

Writing (and keeping) installation scripts for the applications
discussed in these sessions is highly recommended

