
TEXT EDITORS

TEXT EDITORS

• Most common: nano and vi
• nano

– More “user friendly”
• Easy to use

• vi
– By default, installed on most distributions
– Advanced
– Powerful
– Released in
 1976

NANO

38 Options

12 Options

NANO FILE MANAGEMENT

Task Keystroke
Open a file from within nano Ctrl+r

NOTE: tab completion is in effect; also, once this command has been entered, notice
the new menu items at the bottom of the screen.
For example, Ctrl+T will allow you to browse the file system and look for a file to open.

Display the next file buffer Alt+>
Display the previous file buffer Alt+<
Save the current file buffer to disk Ctrl+o

Close the current file buffer Ctrl+x
NOTE: If the file hasn't been saved yet, you'll be asked if you want to save it. Also, if
there's only one file buffer open, closing it will exit from nano.

NANO COPY AND PASTE

Task Keystroke

Select a region for a cut or paste operation Alt+a
NOTE: After setting a mark with Alt+a, move the cursor to define
the region, you should see it highlighted as you move the cursor.
Also, to cancel the definition of the region just enter Alt+a again.

Copy a highlighted region into the clipboard Alt+^

Cut a highlighted region into the clipboard Ctrl+k

Paste the contents of the clipboard at the
current cursor position

Ctrl+u

Cut from the current cursor position to the
end-of-line (EOL)

Ctrl+k
NOTE: This command doesn't require highlighting of the region.

NANO NAVIGATION

Task Keystroke

Go to beginning of file Alt+\

Go to end of file Alt+/

Move forward one screenful Ctrl+v

Move backward one screenful Ctrl+y

Go to a target line number Alt+g

Jump to matching open/close symbol Alt+]
NOTE: Very useful for finding mismatched brace compiler errors!

Window scrolling Alt+= to scroll down, Alt+- to scroll up

Indenting/Outdenting selected blocks Use Alt+a to select a block, then Alt+} will indent the selected block,
and Alt+{ will outdent the block.

vi

vi MODES
Name Description Help page

normal For navigation and manipulation of text. This is the mode that vim will usually start in, which you can
usually get back to with ESC.

:help Normal-mode

insert
For inserting new text. The main difference from vi is that many important "normal" commands are
also available in insert mode - provided you have a keyboard with enough meta keys (such as Ctrl,
Alt, Windows-key, etc.).

:help Insert-mode

visual For navigation and manipulation of text selections, this mode allows you to perform most normal
commands, and a few extra commands, on selected text.

:help Visual-mode

select Similar to visual, but with a more MS Windows-like behaviour. :help Select-mode

command-line For entering editor commands - like the help commands in the 3rd column. :help Command-line-mode

Ex-mode Similar to the command-line mode but optimized for batch processing. :help Ex-mode

https://en.wikibooks.org/wiki/Learning_the_vi_Editor/Vim/Modes

Visual Line mode: Shift+V Visual Block mode: Ctrl+V

https://www.shell-tips.com/cheat-sheets/vim-quick-references/vi_vim_cheat_sheet.pdf

Vi & Vim
CHEAT SHEET 101

Press ESC (escape key) to get into the Vi command mode. You will need to press the RETURN key to execute a
command starting with the character colon ":", slash "/", or question mark "?". Use CTRL+c to cancel a command, the
dot "." to repeat your last command, and ":!cm d" to execute a shell command named cmd.

https://www.shell-tips.com Essentials References for the Vi/Vim text editor
Last Updated: Mar 20, 2022

Insert & Replace insert mode
i insert text before the cursor

a insert text after the cursor

I insert text at the beginning of the current
line

A insert text at the end of the current line

o insert text in a new line below the cursor

O insert text in a new line above the cursor

r replace a character at the cursor position

R replace characters starting at the cursor
position

Ex Commands vi features
:q quit current open file

:q! force to quit without saving changes

:w save file

:w file save file as file

:wq! force to save file then quit

:x,yw file write from line x to line y into file

:w » file append buffer to file

:e file edit another file

:e! file edit another file without saving current
changes

:r file insert file content at the current cursor
position

:n edit next file in vi arguments file list

CTRL+G display current file name and position

Search & Substitute patterns
/string search forward for string

?string search backward for string

n repeat the last search

:,$s/str1/
str2/gc

search and substitute str1 by str2 from the
current line to the end of file. A line number
can be specified before the comma “,”. The “c”
ask for confirmation before each substitution

:%s/str1/
str2/g

replace all str1 by str2 in all the file without
prompting for confirmation

:%s/str1/
str2/

replace str1 by str2 on the first occurrence in
each line of the file

Undo, Delete, and Copy edit commands
u undo last change

CTRL+r redo last undo change

mA set mark A to current position. Marks can be
the letter [a-z] and [A-Z]

y'A yank (copy) from current line to mark A

d'A delete from current line to mark A

P put the buffer content before the cursor

p put the buffer content after the cursor

x delete character at cursor position

dW delete first word after cursor position

d$ or D delete from cursor position to end of line

dd delete current line

J join current line with following line

Cursor Motion navigation
h or insert text before the cursor

l or insert text after the cursor

k or insert text at the beginning of the current line

j or insert text at the end of the current line

G goto the end of file

nG or :n goto the line number n

0 move to the beginning of the line

$ move to the end of the line

CTRL+f move one screen view forward

CTRL+b move one screen view backward

You can start vi with arguments, the -c option is particularly useful
to execute commands in a file from the command line. You can
separate multiple commands with a pipe “|”.

Example:
vi -c “%s/false/true/g|:wq” file.txt

Going Further with:
:map for mapping a key in command mode to a group of commands.
Example: “:map de :1,$d^M” will delete all lines when using the :de
command.
:set to define or show your editor options.
Example: “:set number” will make vi display line numbers, and “:set all”
will display all current vi options.
:ab to define a text abbreviation in insert mode.
Example: “:ab VIM Vi Improved” will auto-complete “VIM” in insert mode
for the phrase “Vi Improved”.

VIM EXAMPLES

• Download the example get_data.sh script
• Make the script executable and execute it
• Open the file mobi.txt with vi

– Search for the second line starting with ***
– Delete 352 lines
– Go to the first line, delete the first 844 lines
– On which line does Chapter 42 start?
– What is the first word of the 4th sentence in that chapter?
– Go to the bottom of the file

• How many lines are in the file

– Exit vi, without saving the changes

VIM EXAMPLES

• unzip the convertcsv.txt.zip file
• Open convertcsv.txt with vi
• In vi:

– Search for John
– Search for John, excluding other names, e.g., Johnathan

• Delete the whole first column
• What is the name of the person on line 13 735?
• Undo all changes, without quitting and without saving
• Go to line 1

– Add a semi-colon ; as a separator between columns
(for all records)

• Save the file to a new name: converted.csv
• Exit vi…. Is it asking to save the file again?

MODIFY SUDOERS

• Become root
• Open either /etc/sudoers or execute visudo

– Search for a line starting with %wheel
– Comment out that line (add # in the front of the line)
– Search for a line containing NOPASSWD
– Uncomment that line (remove the # from the front)

– Save and exit vi
– Log out of the system
– Log back in
– Execute a sudo command….was the password requested

