
BASIC LINUX CONCEPTS

GNU LINUX CONCEPTS

• GNU Linux and its kernel is Written in C
– This means that C-concepts come heavily into play
– One such concept is file and command case sensitivity:

The following files can exist in the same directory and can all be
different files:
 File1 file1 FILE1 filE1

• Directories and files can’t be named the same in the same directory level:
echo "New important file" > important_files
mkdir important_files
mkdir: important_files: File exists

• Completion & Auto-Completion
– Commands and paths can be autocompleted by tapping the TAB button
– A very useful package to install

bash-completion

GNU LINUX CONCEPTS

• GNU Linux uses POSIX file systems, which allows ACLs etc.
• Look at file permissions:

 ls -l /etc/passwd
• Change a file's permission:

 chmod ug+x filename #exec to user & group
• Change a file's owner (as root):

 chown user:group file_name
• Special files exist, such as symbolic (aka soft) links:
 ln -s /etc/passwd password_file
• Although a file/directory name can contain a space....it is not

recommended.

GNU LINUX FILE SYSTEM STRUCTURE

• / #Root Directory much like c:\
• /bin #Most system wide executables like c:\windows
• /boot #Grub boot partition with kernel images
• /etc #System wide configuration files
• /home #Holds users' home directories
• /lib(64) #System libraries much like dll files
• /mnt #Can be used to mount external drives etc.
• /proc #System devices (Hardware) and processes
• /root #Root user's home directory
• /run #Some temp files for services & processes
• /tmp #Temporary files
• /usr #Usually installation path of some apps/databases
• /var #Files/databases/logfiles that change a lot

ENVIRONMENT VARIABLES

• System wide environment variables can be set in /etc/profile.d/
• User can use ~/.bashrc to set profile after each login
• Important environment variables:

– USER, HOME, PWD
– PATH, LD_LIBRARY_PATH

• Can view variables using set, redirecting it to less:
 set | less

• Setting a variable:
 export PATH=$PATH:$HOME/bin

• Unsetting a variable:
 unset My_Variable

• Most HPC systems make use of environment modules to
manage environment

GNU LINUX EXECUTABLES

• An application/script can be executed from anywhere if its path is
in the PATH environment variable

• A file/script/application can be made executable using the
chmod command

• You can see which executable is used (full path) using which:
 which ls #Note it may refer to an alias

• How to run a process in the background:
 dd if=/dev/zero of=/dev/null count=6000000 &

• An application returns a return code after execution, and it is
saved in the special environment variable $?
– A value of 0 (zero) means it was successful
– A non-zero value indicates that an error(s) occurred
 cat /etc/passwd

echo $?

GNU LINUX EXECUTABLES

• Executing more than one command in a single line:
 hostname; uptime; free -m; df -h /

• Execute a command only if the previous command was
successful:
 cd /var/log && tail dmesg

• Execute a command only if the previous command was
successful, if it failed execute something else:
 touch /etc/passwd && echo "done" || echo "failed"

REDIRECTING OUTPUT

• A useful feature is redirecting output to a specific device/file
 ps -ef > procs
• Another useful feature is redirecting output to a command

– This is called piping, for you use the pipe character "|"
cat /proc/cpuinfo | grep "flags" | sort -u

• One can also use the output within a command:
 echo "Today's date is: $(date)"
• Special redirection of STDERR to a file:

strace ls 2> error
• Special redirection of STDOUT and STDERR to a file:

ls /* &> output
• Special redirection of STDERR to STDOUT:

ls /* 1>&2

GNU LINUX BASIC TOOLS

• Information regarding a command (ls)
 ls --help; man ls; info ls; apropos ls

• Redirecting output….using pipe
 ls / | grep "m"

• Shell Scripting
– Writing a shell script

• File/Directory permissions
– Checking / changing file permissions

• Converting Windows files to Linux format
 dos2unix
 unix2dos

• Changing content in a file, using Regular expressions
 sed -i "s|search for this|replace with this|g" filename.txt

GNU LINUX BASIC TOOLS

• Connecting to other machines:
– GNU Linux uses the SSH protocol
 ssh username@remote_host
– If the username on the local machine is the same on the

remote machine:
 ssh remote_host
– If you just want to log in and execute a command on the

remote host:
 ssh -n username@remote_host "uptime"

TRANSFERRING FILES TO REMOTE HOSTS USING SCP

• Copy a file to a remote machine:
 scp this_file user_name@remote_host:

– This will copy "this_file" to the home directory of the user
• Copy a file to a specific path:
 scp this_file user@remote_host:/tmp/

– This will copy the file as /tmp/this_file on the remote host
• Copy a directory to a remote host:

scp -r /etc/skel/ user@remote_host:/tmp

TRANSFERRING FILES FROM A REMOTE HOST

• Copy /etc/passwd from remote host to current directory:
scp remote_host:/etc/passwd .

• Copy a remote directory to a specific path on local:
scp -r remote_host:/etc/skel /tmp

GNU LINUX BASIC TOOLS

• Getting Software from the internet:
– curl, wget, dnf, git

• Installing software
– dnf install
– rpm -ivh package.rpm
– wget http://xxx; tar -zxf xxx;cd xxx; ./configure ; make; make install

• Searching for files
– find / -name textfile.txt; locate

• Searching for content in files
– grep -i “string inside a file” textfile.txt

– Using Regular Expressions
• grep “^LogFile=Log[0-9]*\.log$” textfile.txt

http://xxx/

ACTIVITY

• Create a VM on a machine where you have access to
• Install GNU Rocky Linux on that VM
• Familiarize yourself with the bash environment
• Always log in with your own user, don't become root

unless you have to
• Try installing and removing some packages using rpm and

dnf

INSTALLING SOFTWARE

INSTALLATION OF SOFTWARE

• GNU Linux makes use of two types of software installations
– The first is installing a binary – Precompiled Software
– The second is installing from Source Code

• On a HPC system, we tend to install a precompiled package for most of the
generic GNU Linux packages such as Apache, bind etc.

• When installing Scientific Applications, we try to install from source code,
allowing us to compile software specifically for the hardware

• Another reason for installing from Source Code is to get the latest and
greatest features from the packages

• Installing a binary is relatively simple
– You can install using a package manager such as (dnf)

• DNF searches for dependencies and (hopefully) takes care of all the
dependencies

– You can install using a low-level package installer (rpm)

INSTALLING SOFTWARE

• Prebuild Packages in RedHat systems follow the following
convention:

– <package-name>-<major ver>.<minor ver>-<release>.<RedHat Release>.<arch>
– For instance:
 vim-enhanced-8.2.2637-20.el9_1.x86_64

• There are also development tools for some packages
– These packages usually include files and source code that can

be used to link against other applications:
glibc-devel

• Finally, a lot of packages separate their libraries from the
application. This allows other applications to make use of the
libraries without the need to have the referring application installed:

gettext-libs
• RedHat Linux also has Source RPMS that can be installed and

used to compile your own RPM from what is called a SPEC file

INSTALLING SOFTWARE FROM SOURCE

• The installation of software from source usually follows the
following procedure:
– Download the source code from a website
– Extract the "tar ball" (tar -xvf package_name.tar.gz)

• The source usually contains a README and
INSTALL file which gives installation instructions

– Perform the configuration (./configure --prefix=/usr/local)
– Compile the source code (make -j 12)
– Optionally, test the compiled code first (make test)
– Install the software onto the system (make install)

LAB PRACTICAL

• Using dnf
– Try to install "munge"
– Install:

• epel-release
• munge
• Midnight Commander
• wget
• A package that provides libpng16.so.16.37.0
• Determine the dependencies for httpd

– Try to remove but don't physically remove:
• munge-libs

ADDITIONAL LAB PRACTICAL

• Execute:
– export mirror_path=https://mirror.ufs.ac.za/rocky/9.2/
– export app_path=$mirror_path/AppStream/x86_64/os/Packages
– export base_path=$mirror_path/BaseOS/x86_64/os/Packages
– wget $base_path/n/net-tools-2.0-0.62.20160912git.el9.x86_64.rpm
– wget $app_path/h/httpd-2.4.53-11.el9_2.5.x86_64.rpm
– wget $app_path/h/httpd-tools-2.4.53-11.el9_2.5.x86_64.rpm
– wget $base_path/m/mailcap-2.1.49-5.el9.noarch.rpm

• Using the RPM command:
– Install the downloaded net-tools package
– Remove the munge-libs package without removing munge itself
– Determine which package provides /etc/services
– Determine which files the package nfs-utils installs
– Determine if strace is installed
– Install httpd

• Perform an ldd on the munge executable
• Remove munge using RPM

