

OUTLINE

- Introduction
- Infrastructure
 - Hardware concepts, the importance of certain components
- Installing a GNU Linux system
 - Installation procedure installing Rocky Linux
- TCP/IP concepts and Firewalling
 - Services, configuring and debugging
 - Domain Services such as DNS, DHCP, NTP, NAT, LDAP
- Networking and network segmentation using VLANs
- Distributed File Systems
- Hypervisors and Cloud Infrastructure installation

T: +27(0)51 401 9111 | info@ufs.ac.za | www.ufs.ac.za

JFS

INTRODUCTION

UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE VRYSTAAT YUNIVESITHI YA FREISTATA

WHAT INDIVIDUALS SHOULD KNOW

- Basic understanding of IP networking
 - (DNS, LDAP, DHCP, IPv4, UDP/TCP, Gateway, Firewall, Switches)
- Comfortable using the terminal/console/command line
- Intermediate knowledge of Linux (Using bash)
- Use basic text editors (vi, nano, emacs)
- Able to understand and write bash scripts
- Understand environment variables
- Understand and use of Makefiles & Compilers
- Some debugging techniques

THIS PRESENTATION

- If you see a Tux, it means there is an activity that you should perform on your own at a later stage
- Most images were downloaded from the Internet (like Tux) and could have copyright disclosures
- Although most information contained in these documents are accurate, somethings are open to interpretation (simplified for better understanding) and it is good to form your own opinion

CONTACT

- If you have specific questions, you are welcome to contact me
 - But please, try and get to a solution on your own first, it is good practice
- This is an open session, and you are welcome to ask questions and even point out if something is incorrect
- You may feel overwhelmed but keep pushing yourself.
 - Learning new skills takes some time
 - The author of this presentation has over 20 years of GNU Linux experience and still learns several new things every week or so
 - Just take it as it comes and practice on your own, you'll be amazed what you will accomplish with some practice

ENCOURAGEMENT

- We encourage critical- and logical thinking
 - Always ask yourself why and if you don't know why, find out....don't just simply take my or anyone's word for it
 - There are several ways to accomplish a certain task in GNU Linux, we only demonstrate one or maybe even a few
 - You may find a simpler way that works better for you
- Engage in conversation with us or each other, even if it's controversial

INTRODUCTION TO HPC

UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE VRYSTAAT YUNIVESITHI YA FREISTATA

HPC BACKGROUND

- High Performance Computing is the use of a computer system (usually a distributed system, working together) to solve a magnitude and diverse set of real-world problems
- The concept of HPC started in 1994 with Beowulf Clusters (Distributed Memory Computers)
- The UFS HPC currently serves researchers from numerous departments:
 - Animal & Plant Genetics, Bio-Informatics, Chemistry, Computer Sciences, Engineering, Human Genetics, Mathematics, Medical Microbiology, Medical Physics, Physics, Statistics and Virology.....

WHY...JUST WHY

- As an IT professional, why care about HPC/Linux?
- Get exposure to the bleeding edge technology
 - NDA with Intel and other vendors
 - The Internet was developed by CERN in 1989 due to demands of experiments
- Trends
 - Cloud Computing, Virtualization, Big Data, Data mining, AI, Computer Rendering, Machine Learning, Block Chain technologies
 - All these services make use of concepts contained in these sessions, and almost all these technologies makes use of GNU Linux
- HPC shape the Datacenters of tomorrow
 - Building blocks for any datacenter
- Give yourself a competitive advantage, know the lower levels and how they function

WHAT TO CONSIDER, WHEN BUILDING YOUR OWN HPC

- Effectively solving problem sets in the shortest possible time, taking into consideration:
 - Cost
 - Hardware, Software Licenses, Power, UPS, Cooling etc.
 - Complexity/Ease of use
 - HR required to manage, user base, support
 - Resource Management
 - Focusing on hardware resources available
 - Storage
 - Requirements & Speed

TECHNICAL SIDE OF THE DESIGN

- Assuming: You can afford to, and need to build your own HPC
 - Cost
 - Hardware, Software Licenses, Power, UPS, Cooling etc.
 - Complexity/Ease of use
 - HR required to manage, user base, support
 - Resource Management
 - Focusing on hardware resources available
 - Storage
 - Requirements & Speed

SUPER COMPUTERS

• From the past to present

	1987	1994	2019	
Name	Cray 2	Beowulf	IBM Summit OLCF-4	
Performance	~ 1.9 GFlop	1.1 GFlop	200 PFlop	
CPU Speed	244 MHz	16 Cores Pentium MMX	9 216 x Power9 22-Core CPUs 27 648 x nVidia Tesla V100 GPUs Total: 2 414 592 Cores	
Price	\$32m	\$50k	\$325m	

- A **petaflop** is 1,000 **teraflops**; or one quadrillion (10¹⁵) floating-point operations per second
- An Intel Core i9-9900K CPU = \$ 650.00 @ 84.33GFLOPS ~ 2 271 635
- More @ <u>Top500.org</u>

FLOPS – MEASURING UNIT

- FLOP is a measuring unit for compute performance
- It can be quarter(a bit rarer measurement)-FP8, half-FP16, single-FP32, or double precision-FP64
- For example, a computer that does 1 Petaflop in FP8 will do 500 TeraFLOPs in FP16, 250 TeraFLOPs in FP32 and 125 TeraFLOPs in FP64
- So, you need to determine what kind of precision is measured when determining power in FLOPs
- You can use some benchmarking tool such as BOINC to see how many FLOPs your PC can do
 - Windows, Mac, Linux or Android devices

HARDWARE COMPARED

https://pages.experts-exchange.com/processing-power-compared

PBS JOB LIST EXAMPLE

ID	Username	SessID	NDS	TSK	Memory	Req Time	S	Elap Time
183787	cl	11143	1	60	480gb	1000:00:	R	833:55:35
185944	co	22786	2	32	800mb	500:00:0	R	315:26:40
185954	va	24119	1	1		600:00:0	R	315:09:09
185968	va	42387	1	1		600:00:0	R	315:09:07
185977	va	42776	1	1		600:00:0	R	315:09:07
185996	va	7132	1	60	500gb	300:00:0	R	246:30:07
186031	va	44393	1	60	20080	480:00:0	R	220:53:15
186114	la	45839	4	1080	750mb	100000:0	R	148:14:54
186172		171404	1	16	/ 30110	125:50:0	R	79:14:06
	ad		1					
186175	CO	174538		16		195:50:0	R	78:34:07
186176	CO	174550	1	16		195:50:0	R	78:34:07
186177	CO	174565	1	16		195:50:0	R	78:34:07
186178	СО	174586	1	16		195:50:0	R	78:34:07
186180	со	174633	1	16		195:50:0	R	78:34:06
186181	со	174653	1	16		195:50:0	R	78:34:06
186182	CO	174685	1	16		195:50:0	R	78:34:06
186183	CO	174718	1	16		195:50:0	R	78:34:06
186185	со	174951	1	16		195:50:0	R	78:34:05
186186	со	175001	1	16		195:50:0	R	78:34:05
186187	со	175058	1	16		195:50:0	R	78:34:05
186188	со	44279	1	16		195:50:0	R	78:34:05
186191	со	176302	1	16		195:50:0	R	78:33:58
186192	CO	44447	1	16		195:50:0	R	78:33:58
186260	ma	10182	1	12	96gb	48:00:00	R	33:27:04
186261	20	46180	1	16	128gb	48:00:00	R	31:53:00

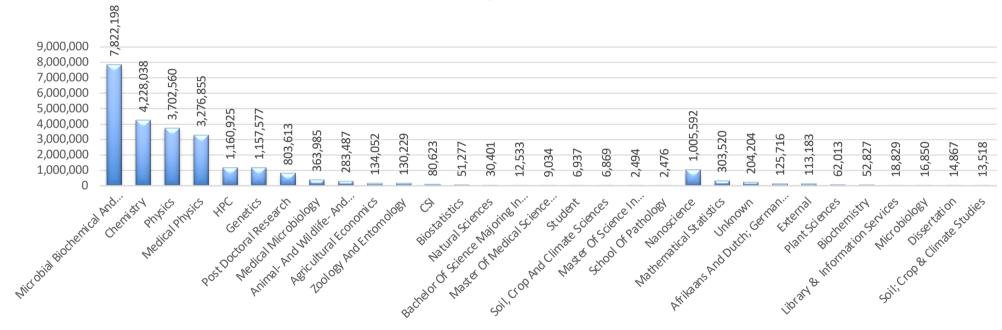
STATISTICS FOR 2022

Indicator	Value
Number of jobs	46 560
CPU Hours	403y 172d 10:11
Estimated Amazon Pricing*	R 19 268 215.77
Storage Used (Homes)	131.09 TB
Storage Used (Scratch)	10.76 TB
Users	499
Scientific Software Packages (modules)	510
Total CPU Hours since 2010	4 737y 363d 09:19

* Only cost of CPU hours. This excludes:

- Time of configuration, support, installation
- Storage Costs
- Data Transfer rates etc.

THEORETICAL PERFORMANCE


Hardware	# Nodes	Units Per Node	Tera FLOPS per Unit	Total TFLOPS
NVidia V100 Tesla Cards	2	4	7.000	56.000
Intel Xeon E5-2697A	18	2	0.750	27.000
Intel Xeon Phi 7250	8	1	2.662	21.296
Intel Xeon Phi 7290	8	1	2.995	23.960
Intel Xeon Gold 6142	2	2	1.147	9.176
Total Peak Performance				137.432*

Equivalent to 333 Intel Core i7-8700K Laptops (412.5 GFLOPS ea.)

or Half of the performance of the world's largest cluster in 2005 (BlueGene/L. 131 072 Cores)

STATISTICS SINCE 2010

CPU Hours Per Department (Since 2010)

HPC HARDWARE

C Copyright reserved Kopiereg voorbehou UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE VRYSTAAT YUNIVESITHI YA FREISTATA

THE OLD UFS GEN 3 & 4 CLUSTER

PAST: GEN 3 & GEN 4 AMD NODES

17 x Generation III Nodes (816 Cores)

AMD Opteron 6174 CPU 2.2GHz (48 Cores)

64 Gb 1333MHz DDR3 ECC Registered Memory

Mellanox ConnectX-2 VPI Dual Port InfiniBand QDR

2 x 1400W PDU

8 x Generation IV Nodes (512 Cores)

AMD Opteron 6274 CPU 2.2GHz (64 Cores)

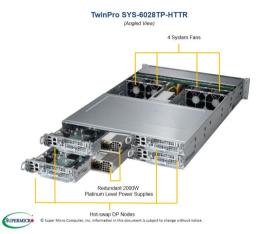
128 Gb 1600MHz DDR3 ECC Registered Memory

Mellanox ConnectX-3 VPI Dual Port InfiniBand QDR

2 x 1400W PDU

THE UFS GEN 5 CLUSTER

DECOMMISSIONING: GEN 5 & KNL INTEL NODES


16 x Generation V Nodes (1 024 Cores)

Intel Xeon E5-2697A v4 2.6GHz (64 Cores)

512 Gb 2400MHz DDR4 ECC Registered Memory

Intel Omni-Path 100GB PCIE

2 x 2000W PDU

Super Server SYS-5028TK-HTR (Angled View – System)

16 x Generation V Nodes (4 480 Core Threads)

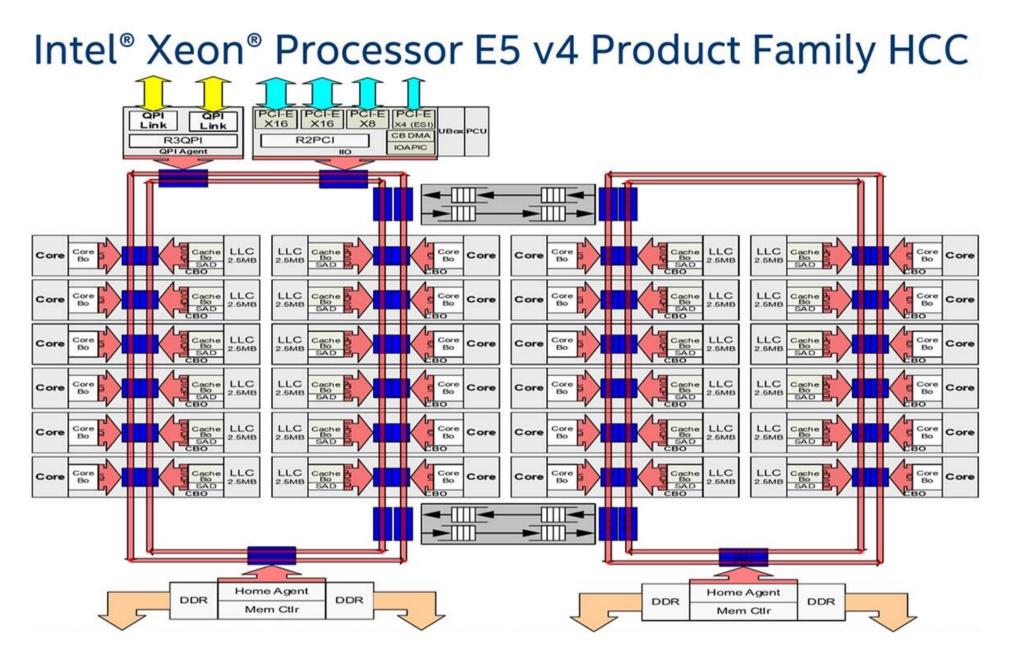
Intel Xeon CPU 2.2GHz (72 Cores, 288 Threads)

256 Gb 2400MHz DDR4 ECC Registered Memory

Intel Omni-Path 100GB PCIE

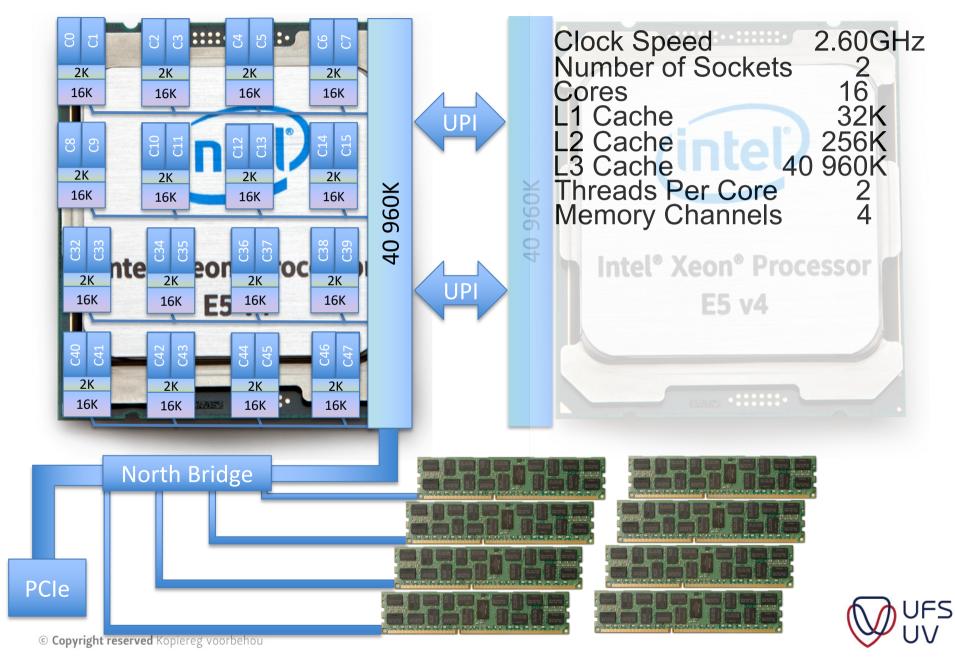
2 x 2000W PDU

CPU

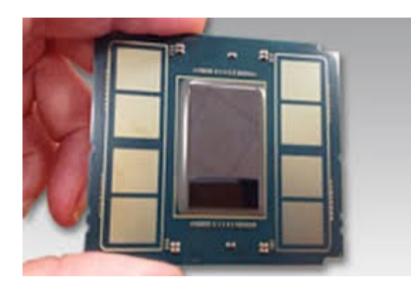

• We have all seen specs like this:

Description	Value
Clock Speed	2.60GHz
Number of Sockets	2
# Cores	16
L1 Cache	32K
L2 Cache	256K
L3 Cache	40 960K
Threads per Core	2
# Mem Channels	4

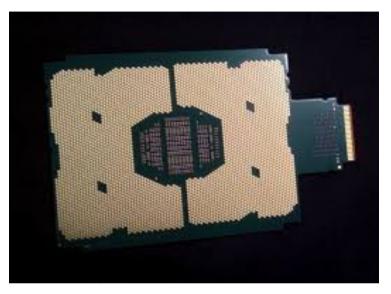
But what does this mean....is it good, is it bad, is it high is it low?



https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview

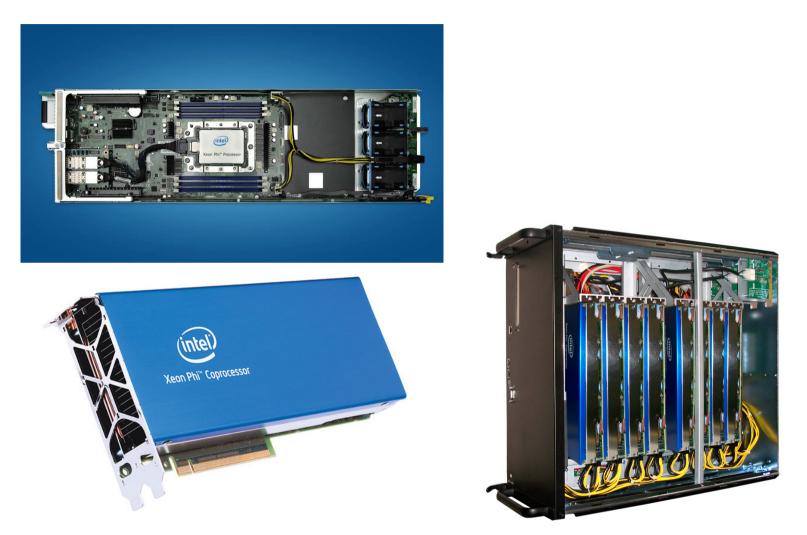


*** Own representation, actual design differs


CPU ARCHITECTURE

INTEL KNIGHT'S LANDING HOST PROCESSOR

Xeon Phi



Xeon Phi with Integrate Omni-Path

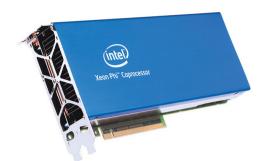
Also known as: Xeon Phi or Xeon Many Integrated Cores (MIC)
Based on the Intel Atom Processors (1.3 ~ 2.2 GHz)
64 to72 Cores, with 4 Threads each
Respectively providing between 256 and 288 Threads

INTEL KNIGHT'S LANDING COPROCESSOR

Like Host Processor but can add up to 8 coprocessors in a server

HARDWARE

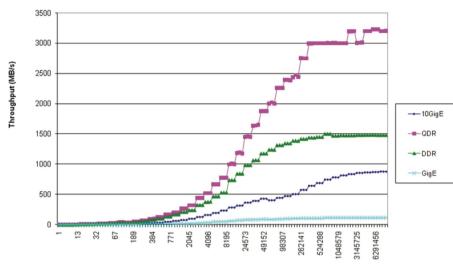
Intel (Gen5)		/s AME) (Gen6)
Description	Capacity	Description	Capacity
Clock Speed	2.60GHz	Clock Speed	2.20GHz – 3.5GHz
Number of Sockets	2	Number of Sockets	2
# Cores	16	# Cores	64
L1 Cache	32Kb	L1 Cache	64Kb (per core)
L2 Cache	256Kb	L2 Cache	512Kb (per core)
L3 Cache	40 960Kb	L3 Cache	768 000Kb
Threads per Core	2	Threads per Core	2
# Mem Channels	4	# Mem Channels	8
RAM (2600MHz) DDR 4 ECC Registered	512GB	RAM (2933MHz) DDR 4 ECC Registered	2 048GB



HARDWARE

AMD (EPYC 7773X)		S Cloud (Intel Gold 6326)		
Description	Capacity	Description	Capacity	
Clock Speed	2.20GHz – 3.5GHz	Clock Speed	2.90GHz – 3.5GHz	
Number of Sockets	2	Number of Sockets	2	
# Cores	64	# Cores	16	
# Threads	128	# Threads	32	
# Mem Channels	8	# Mem Channels	8	
RAM (2933MHz) DDR 4 ECC Registered	2 048GB	RAM (3200MHz) DDR 4 ECC Registered	1 024GB	
GPU	8 x RTX A4000 or 4 x RTX A5000			

INTEL VS NVIDIA



FS

Intel [®] Xeon Phi [™] coprocessor 7200 Family	NVIDIA Tesla™ V100 Architecture NVLink
Normal 64-Bit operation	GPU accelerated computation
Coprocessor runs a minimalistic GNU Linux	No direct access to processors
Code can be easily recompiled GCC/Intel	Code rewritten in CUDA
2.828* TeraFLOPS double-precision	7.8 TeraFLOPS double-precision
\$2 214 to \$6 294	\$15 800 to \$19 200
http://www.intel.com/content/www/us/en/prod ucts/processors/xeon-phi/xeon-phi- coprocessors.html	https://www.nvidia.com/en-us/data- center/tesla-v100/

* Claim based on calculated theoretical peak double precision performance capability for a single coprocessor. 32 Double Precision FLOPS/clock cycle/core * 68 cores * 1.3 GHz = 2.8 TeraFLOPS

NETWORKING: ETHERNET 1GB vs 10GB vs OMNI PATH

Message Size (Bytes)

- Omni Path not featured in Graph
- Scale too high for comparison

Feature	Ethernet 1Gb	Ethernet 10Gb	Intel Omni Path
MTU (Max. Transport Unit)	1 500 – 9 000	1 500 – 9 000	65 520
* N/2 (bytes)	12 300	98 300	10 000
* Latency (μs)	47.61	12.51	0.93
Max Bandwidth (MB/s)	112	875	12 500

* Lower value is better

ETHERNET VS OMNI PATH

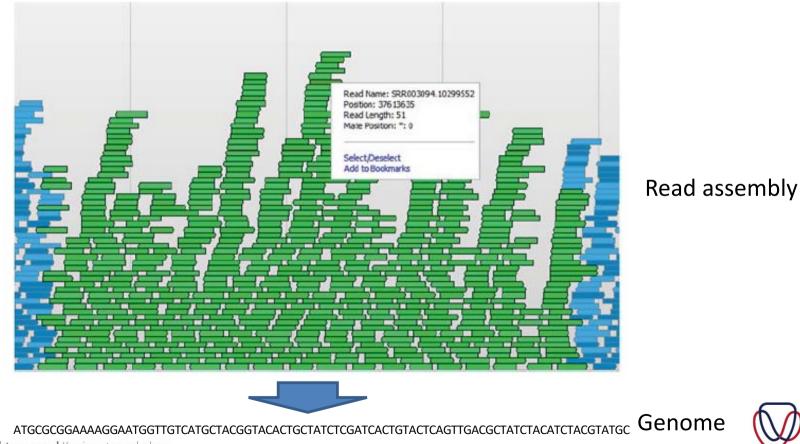
- Omni Path has a lower latency and higher throughput
- Omni Path costs less over time, due to time saved/power consumed
- As the number of nodes increases, the value of Omni Path becomes evident
- Omni Path <u>may not</u> be "cheapest" therefore the "best" solution for a cluster with very few (less than 4) nodes
- Some applications can run up to 450+% faster when nodes are increased beyond 24 nodes, using Omni Path vs. 10Gb Ethernet
- Omni Path is created by Intel and intended for Intel CPUs

HPC HARDWARE

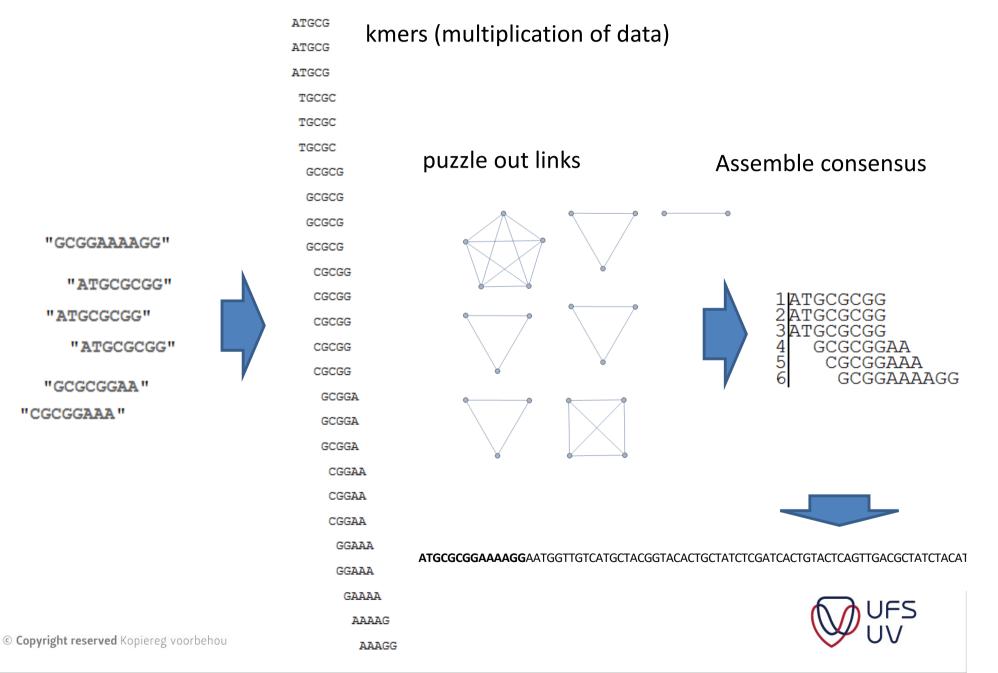
- Design Considerations
 - Problem Specific
 - Bioinformatics
 - Large datasets ~ Large Memory (512GB 1 TB RAM)
 - Low(er) CPU requirement (Some jobs 1-8 CPU Cores)
 - Physics
 - Usually Embarrassing Parallel ~ More Nodes
 - Monte Carlo Simulations ~ Random Data
 - High CPU utilization
 - Fluid Dynamics (Engineering, Chemistry, Physics, Weather etc.)
 - High CPU utilization
 - High Communication between CPUs (Latency important)
 - Is redundancy Important?
 - Is expansion possible/required?

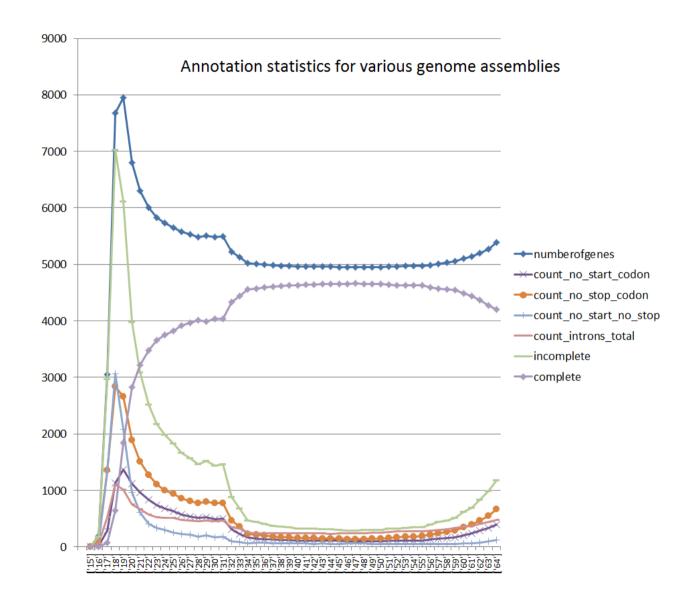
NEXT-GEN SEQUENCER

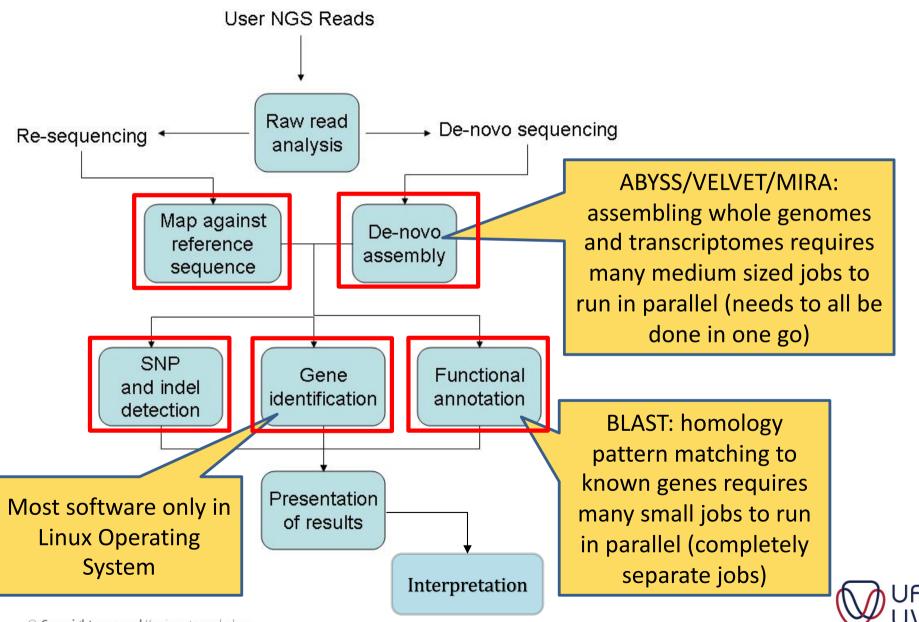
Illumina Next-gen sequencer



DNA or RNA sequence


HOW DO WE BUILD (ASSEMBLE) A GENOME?

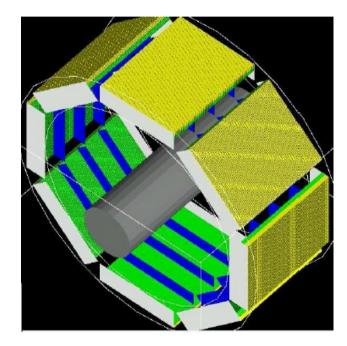

- A Next-Gen Sequencer (NGS) produces millions of short (100-300 base-pair) reads of the sheered DNA in one go
- The algorithm then looks for overlaps and assembles the consensus genome


WORKINGS OF THE ALGORITHM

NGS PIPELINE

WHY DOES NGS REQUIRE AN HPC?

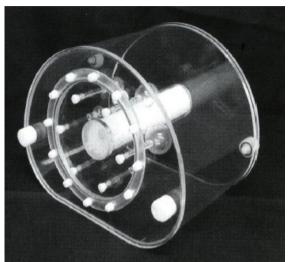
- Sequencing of a genome, produces large datasets
 - A yeast: 10 000 000 bp genome.
 - At 100×coverage: 1000 000 000 = 1 Gigabase base pair (± 10 Gigabyte of data on the hard drive)
 - A human genome: 3 000 000 000 bp genome.
 - At 100×coverage: 300 000 000 000 = 300 Gigabase base pair (± 3 Terabyte of data on the hard drive)
 - Many plants have genomes 100 times larger than a human



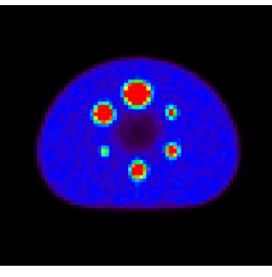
- Design Considerations
 - Problem Specific
 - Bioinformatics
 - Large datasets ~ Large Memory (512GB 1 TB RAM)
 - Low(er) CPU requirement (Some jobs 1-8 CPU Cores)
 - Physics
 - Usually Embarrassing Parallel ~ More Nodes
 - Monte Carlo Simulations ~ Random Data
 - High CPU utilization
 - Fluid Dynamics (Engineering, Chemistry, Physics, Weather etc.)
 - High CPU utilization
 - High Communication between CPUs (Latency important)
 - Is redundancy Important?
 - Is expansion possible/required?

REAL WORLD vs MODELLED

GE PET/CT Scanner ± R 1 600 000 + R 4 000p/use


GATE modelled PET Scanner "Free" CPU Time

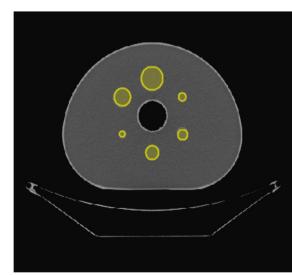
http://www.opengatecollaboration.org/


... PHANTOM STUDIES: PET/CT

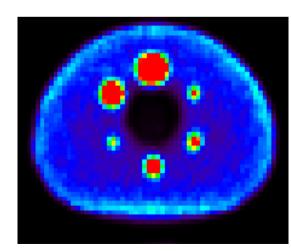
IEC Body Phantom (physical)

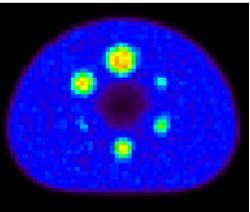
IEC Body Phantom (voxellised)

PET Scan (10:1)



Simulated (10:1)


Simulated (2:1)



Simulated (5:1)

- Design Considerations
 - Problem Specific
 - Bioinformatics
 - Large datasets ~ Large Memory (512GB 1 TB RAM)
 - Low(er) CPU requirement (Some jobs 1-8 CPU Cores)
 - Physics
 - Usually Embarrassing Parallel ~ More Nodes
 - Monte Carlo Simulations ~ Random Data
 - High CPU utilization
 - Fluid Dynamics (Engineering, Chemistry, Physics, Weather etc.)
 - High CPU utilization
 - High Communication between CPUs (Latency important)
 - Is redundancy Important?
 - Is expansion possible/required?

ASTRO PHYSICS

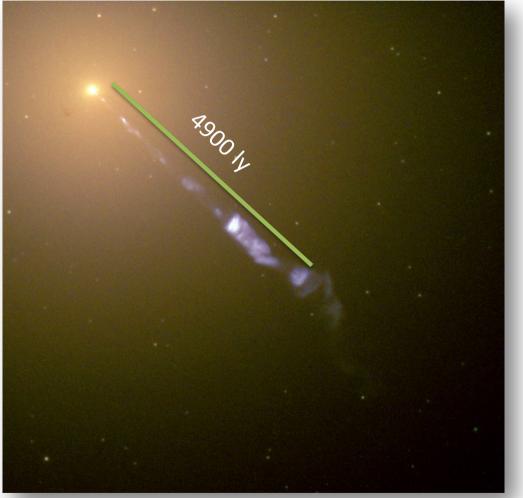
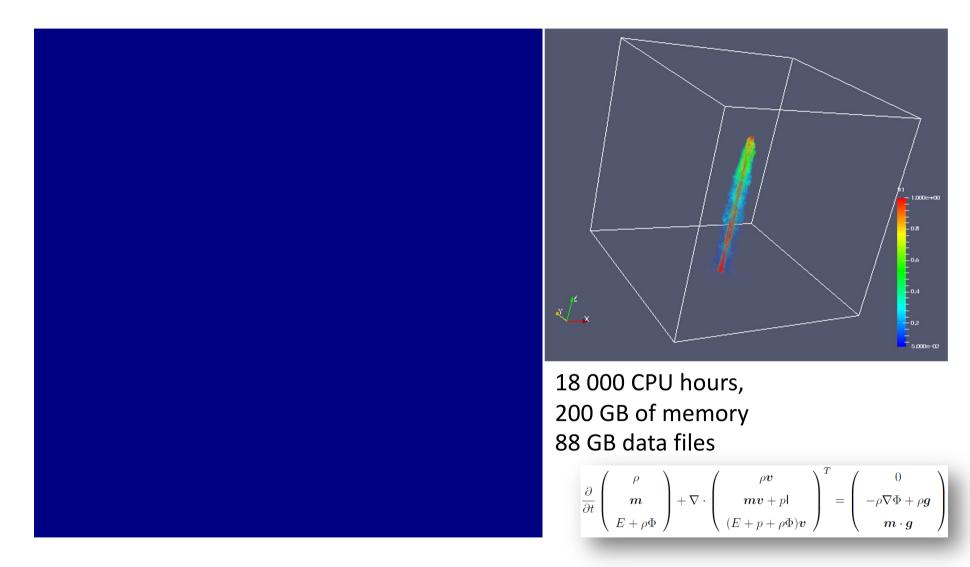
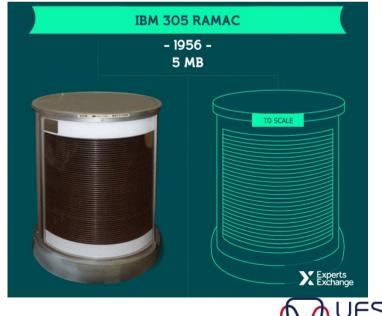



Image - Hubble Space Telescope

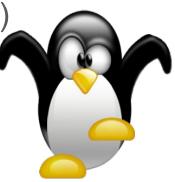
1 000000000 00000000 00000000 00000000 kg

DENSITY SIMULATIONS – ACTIVE GALACTIC NUCLEI – M87



- Design Considerations
 - Problem Specific
 - Bioinformatics
 - Large datasets ~ Large Memory (512GB 1 TB RAM)
 - Low(er) CPU requirement (Some jobs 1-8 CPU Cores)
 - Physics
 - Usually Embarrassing Parallel ~ More Nodes
 - Monte Carlo Simulations ~ Random Data
 - High CPU utilization
 - Fluid Dynamics (Engineering, Chemistry, Physics, Weather etc.)
 - High CPU utilization
 - High Communication between CPUs (Latency important)
 - Is redundancy Important?
 - Is expansion possible/required?

- Considerations when choosing:
 - **COST**, Power Usage, Speed/Throughput, Vendor
 - Size of Cluster:
 - Multiple nodes connected through network
 - Less nodes with more RAM and/or Cores
 - How many nodes can you afford
 - Are you going to consolidate Storage, Scratch
 - CPU
 - Highest common denominator CPU Flags (SSE4.2, VMX, AVX2 etc.)
 - Number of Cores per node
 - Clock Speed
 - GPU
 - Coprocessor vs. GP-GPU or non at all
 - Memory
 - Amount of RAM per machine
 - Network
 - Throughput vs. Latency
 - Storage
 - Size vs. Speed
 - Local vs. distributed



WHAT YOU SHOULD BE ABLE TO DO (CHPC SCC)

- Always keep within the budget (with as little as possible to spare)
- Choose compatible hardware
- Keep the design simple
- Choose wisely, don't focus on only one application
- Know why you choose a specific item; you should be able to motivate your choice in comparison to other options
- Make sure the hardware will fit in the physical space/motherboard
- Keep expansion and hardware failure in mind, but don't design specifically for that
- Give yourself leeway...don't choose one singular expensive component if good alternatives exist.
- Do your own research...be prepared ... (why should or shouldn't you):
 - Use ECC RAM, OmniPath, InfiniBand, SSD, NVMe, GPUs etc. etc.
 - Compare AMD & Intel alternatives.
 - You will also notice we didn't discuss hard drives; see what is out there
 - Also, read up on RAID levels
 - There are also some recommended performance settings at the BIOS level that you can have a look at

