
Introduction to GNU Linux

Reference Manual

Information and Communication Technology Services

Support Services

University of the Free State

Author: Albert van Eck

Revised: October 2019

Contents

1 Accessing Linux from a remote host 1
1.1 Console . 2
1.2 Connecting from Windows . 4

1.2.1 PuTTY . 4
1.2.2 Xming . 7
1.2.3 Transferring Files . 8

1.3 Connecting from Linux or Apple Mac 11
1.3.1 SSH . 11
1.3.2 Transferring Files . 12

1.4 Connecting from a Web Interface . 13
1.4.1 Apache Guacamole . 13
1.4.2 Using Guacamole . 14

2 Linux General Usage 17
2.1 Introduction to Linux . 18

2.1.1 Case sensitivity and restrictions 18
2.1.2 Special Characters . 18

2.2 File System and Permissions . 19
2.3 Bash Shell . 21
2.4 Shell Environment . 21

2.4.1 Variables . 21
2.4.2 Auto complete . 24
2.4.3 Shortcuts . 25
2.4.4 Alias . 26

2.5 Getting Help . 28

3 Linux Commands 29
3.1 Commands Overview . 30
3.2 Introduction . 30

3.2.1 Command return codes . 31
3.2.2 Logical AND/OR testing . 32

3.3 Using output as input . 33
3.4 Command Examples . 34

3.4.1 ssh . 34
3.4.2 scp . 35
3.4.3 rsync . 35
3.4.4 cd . 36
3.4.5 pwd . 36
3.4.6 ls . 37

Contents ii

3.4.7 mkdir . 37
3.4.8 cp . 38
3.4.9 mv . 38
3.4.10 rm . 38
3.4.11 cat . 39
3.4.12 sort . 40
3.4.13 echo . 41
3.4.14 more . 41
3.4.15 less . 42
3.4.16 head . 42
3.4.17 tail . 42
3.4.18 cut . 43
3.4.19 find . 43
3.4.20 grep . 43
3.4.21 screen . 44
3.4.22 info . 45

3.5 Mathematical Arithmetic . 45

4 Editors 49
4.1 Introduction . 50
4.2 Graphical Editors . 50

4.2.1 gedit . 50
4.3 Shell Editors . 51

4.3.1 nano . 52
4.3.2 vi . 53

5 Regular Expressions 57
5.1 Overview . 58

5.1.1 Character sets . 58
5.1.2 Character classes . 58
5.1.3 Anchors . 59
5.1.4 Modifiers . 59
5.1.5 Examples . 59

6 Shell Scripting 61
6.1 Overview . 62
6.2 Logical Testing . 64

6.2.1 If statement . 66
6.2.2 Case statement . 67

6.3 Loops . 67
6.3.1 For Loop . 67
6.3.2 While Loop . 68

6.4 Reading input from different sources 68

iii Contents

6.4.1 Reading values from shell environment variables 69
6.4.2 Working with substring parts of shell variables 70
6.4.3 Reading input from the user 71
6.4.4 Reading content from a file 72
6.4.5 Reading parameters and options from shell 73

6.5 Functions . 75
6.6 Trapping signals . 75

7 High Performance Computing 79
7.1 Overview . 80
7.2 Creating a submit File . 80
7.3 Submitting a job . 82
7.4 Monitor the status of a job . 83
7.5 Cancelling a job . 83
7.6 Getting job output . 84
7.7 Viewing Queues . 85
7.8 Viewing nodes . 85

Bibliography 89

Index 93

Preface

This text shed some light on the general use of GNU Linux. This text is part of
an introductory workshop that shows computer sciences students how to manage a
GNU Linux system. This text is
This text also briefly explains some HPC concepts to assist researchers with some
of the terminology used in High Performance Computing.

Contents vi

Text Layout:

Chapter 1
An introduction to accessing Linux from remote machines.
* Some tools used to connect from Windows machines to Linux
* Connecting from an other Linux machine
* Transferring files between machines over a network

Chapter 2
A brief overview of Linux and the Linux Shell Environment.
* Linux restrictions and limitations
* Escaping special characters
* File System and permissions
* The Linux shell
* The Linux shell environment
* Getting help

Chapter 3
Some of the commands used on a regular basis.
* Command return codes
* Logical testing while using commands
* Examples of some commands

Chapter 4
Some of the Linux editors explained
* Using an advanced editor such as vi

Chapter 5
Introduction to regular expressions
* Character sets
* Character classes
* Anchors
* Modifiers
* Examples

Chapter 6
* The use for shell scripting
* Testing
* Loops
* Functions
* Trapping Signals

vii Contents

Chapter 7
Commands used to run jobs on a HPC
* Creating a submit script
* Submitting a job
* Cancelling a job
* Monitoring job status
* Viewing Output

Some chapters include source code such as the following example:

Listing 1: Example of source code

1 #This is a very long comment that continues onto the next line,
without that line being numbered

2

3 echo "This is an echo command"
4 This is an echo command
5 echo -n "User input will be required here: ";read Input
6 User input will be required here: Albert

In this example listing (Listing 1), each line is numbered, even empty lines
Line 1 starts with a hash (#) and represents a comment line
Line 2 is a clear line
Line 3 is a command that should be executed
Line 4 shows the output of the previous command executed on line 3
Line 5 executes a command to emulate a wizard
Line 6 displays the “wizard’s question” with the user’s response in bold

Some of the output will be omitted from this text, but parts of the output
may be given where the author deemed it necessary.

The commands are referenced and can be looked up in the Index at the back of
this text, under the entries:
command

Acknowledgments

A number of people were involved in the preparation of this text and the presen-
tation of the workshops which were the initiator of the compilation of this text.
Some people are thanked by name for their input, due to the vast role they played
in the workshop and this text.

The author would like to thank the following people for all the work that
they have done in an effort to compile this text and in the arrangements made for
the workshops.

HPC Unit of the University of the Free State - Support,
ICT Services - Assistance and assistants,
Vic Coetzee - Financial aid and support,
Chris Linström - Financial aid and support,

Without these people, the workshops and this documentation would not have been
possible.

-Thank you all

Chapter 1

Accessing Linux from a remote
host

Contents
1.1 Console . 2
1.2 Connecting from Windows . 4

1.2.1 PuTTY . 4
1.2.2 Xming . 7
1.2.3 Transferring Files . 8

1.3 Connecting from Linux or Apple Mac 11
1.3.1 SSH . 11
1.3.2 Transferring Files . 12

1.4 Connecting from a Web Interface 13
1.4.1 Apache Guacamole . 13
1.4.2 Using Guacamole . 14

1.1. Console 2

1.1 Console

The most used interface to a Linux system is the console or also known as a
terminal. A console, or terminal, is a text based interface to a system. Figure 1.1
shows an example of a Linux console. A console is used to enter commands to be
executed and to view the results on the screen. When one opens a console, a new
session is started. All the commands that are executed, executes inside that same
session and are killed off (by default) when that session is closed Eg. when the
console is closed or the connection to the server is lost.

Figure 1.1: A console connection

In Figure 1.1, the command ssh hpc@login.hpc.ufs.ac.za was executed. If
a connection to a server is made for first time, the two machines will exchange
host certificates. This will ensure that the next time a connection is made, the
connection is made to the same machine as expected, or a warning will be shown
to warn a user that he/she is connecting to a different machine than expected. The
user have to type "yes" to import the certificate to the list of know certificates. On
the sixth line, the user is prompted for his/her password. Note that the password
is not displayed while typing, for security reasons. In this case, the password was
typed incorrectly and therefore the user has to retype the password again. After
successfully logging in; some feedback regarding when and from where the last
login was made is displayed on the screen. The last line prompts the user for the
next command to be executed on the remote host.

3 Chapter 1. Accessing Linux from a remote host

When a user is logged into a Linux system, the shell prompt may change
to indicate some information regarding the path in which the user is currently
working, which user is logged in and so on. Listing 1.1 dissects the same command
line, breaking it up into the parts that a command line is usually made up of.

Listing 1.1: Shell Explained

1 [hpc@login jobs]$ ssh hpc@login.hpc.ufs.ac.za #Local Username
2 [hpc@login jobs]$ ssh hpc@login.hpc.ufs.ac.za #Local Hostname
3 [hpc@login jobs]$ ssh hpc@login.hpc.ufs.ac.za #Current Dir
4 [hpc@login jobs]$ ssh hpc@login.hpc.ufs.ac.za #Normal User
5 [hpc@login jobs]$ ssh hpc@login.hpc.ufs.ac.za #Command
6 [hpc@login jobs]$ ssh hpc@login.hpc.ufs.ac.za #Parameters

1.2. Connecting from Windows 4

1.2 Connecting from Windows

1.2.1 PuTTY

When a user needs to log in to a Linux server from his/her computer (Windows), a
third party application is required. The most widely used Windows application to
connect to Linux is called PuTTY. “PuTTY is an SSH and Telnet client, developed
originally by Simon Tatham for the Windows platform. PuTTY is open source
software that is available with source code and is developed and supported by a
group of volunteers.”[Tatham 2010]

Figure 1.2: Default PuTTY login screen

When opening PuTTY, one can configure the default settings or add multiple
sessions to an easy access list. Figure 1.2 shows the Default Login screen. In the
Host Name box, a remote host-name can be entered to which the connection should
be made. In this example the host-name “ui.ufs.ac.za” is used.

1.2.1.1 Configuring PuTTY

After installing PuTTY, a connection could be made to a remote host without
further configuration. Although no additional configuration is required to use

5 Chapter 1. Accessing Linux from a remote host

PuTTY, it is recommended to configure the following two settings.

1.2.1.2 Configuring PuTTY X11 forwarding

As described in Section 1.1, a console only contains text. Sometimes a user requires
more than just a text interface to a Linux system. In these cases, the user will
require to export a graphical interface to the local computer’s screen. Exporting
graphics to an other host is called “X Forwarding”.
PuTTY allows X Forwarding by enabling it under the SSH Settings in the main
PuTTY interface. However, an other application called “Xming” (Section 1.2.2) is
required to implement the X Forwarding but PuTTY needs to have this option en-
abled first to work. Figure 1.3 shows the required settings to enable X11 Forwarding.

After setting this option, if you would like to reuse the setting for any new
session created by PuTTY, you have to save these settings as described in Section
1.2.1.4.

Figure 1.3: PuTTY - Enabling X11 Forwarding

1.2. Connecting from Windows 6

1.2.1.3 Configuring PuTTY Mouse Behavior

Linux has a helpful feature for copying and pasting text using your mouse. By
just highlighting text, the selected text is copied to a special clipboard (This is
not the same clipboard that is used when you highlight text, right click and select
copy). When the text is highlighted, you can paste it in a Linux console simply by
clicking your mouse’s middle button. By double clicking on a word, that word is
highlighted. By triple clicking, the whole line is highlighted. Figure 1.4 shows the
required setting to enable these features.

After setting this option, if you would like to reuse the setting for any new
session created by PuTTY, you have to save these settings as described in Section
1.2.1.4.

Figure 1.4: PuTTY - Enabling Mouse Copy and Paste

1.2.1.4 Saving PuTTY Settings

If any settings are changed in PuTTY, those settings are lost when PuTTY is
restarted unless they are saved to a Session. If settings are changed for instance

7 Chapter 1. Accessing Linux from a remote host

settings described in Section 1.2.1.1, the settings can be saved to a Session by
highlighting the session name and clicking on Save. There is also a text box in the
Sessions section where the user can type in a session name and click on save to
store a new session. In Figure 1.5, the default session is selected and Save is clicked
afterwards. By highlighting “Default Settings“ and clicking ”Save”, the current
settings will automatically be loaded each time PuTTY starts.

Figure 1.5: PuTTY - Saving default session profile

1.2.2 Xming

“Xming is the leading X Window Server for Microsoft XP/2008/Windows 7. It
is fully featured, small and fast, simple to install and because it is standalone
native Microsoft Windows, easily made portable (not needing a machine-specific
installation) ”[Geeknet 2011].

Xming can be used together with PuTTY to export graphics from Linux to
Windows (X11 Forwarding). In Section 1.2.1.2, the required configuration for
PuTTY was described. After PuTTY is configured, Xming can be installed and

1.2. Connecting from Windows 8

started up. Xming must be started before a PuTTY session is opened for Xming
to function correctly. The installation of Xming is straight forward and the user
can use all the default settings when prompted.

To test that Xming and PuTTY works correctly, a user can connect to a
Linux Machine and execute one of the following commands:
xclock
xterm

Figure 1.6: Xming - X Forwarded graphics

Figure 1.6 shows on the left hand side the “xclock” and on the right hand side
the “xterm” interfaces.

1.2.3 Transferring Files

1.2.3.1 WinSCP

To transfer/copy files to and from Linux, a third party application called WinSCP
could be used. Linux uses the SSH protocol to securely transfer files between
systems. “WinSCP is an open source free SFTP client, SCP client, FTPS client
and FTP client for Windows. Its main function is file transfer between a local and
a remote computer.“[Prikryl 2011]

9 Chapter 1. Accessing Linux from a remote host

The installation of WinSCP is straight forward and the default settings of
the installation wizard should suffice.
Figure 1.7 shows a filled out version of the login screen of WinSCP.
Figure 1.8 Shows the WinSCP file manager screen. The user’s local computer is
listed on the left hand side and the remote host’s files and directories are listed on
the right hand side.

Figure 1.7: WinSCP - Login Screen

1.2. Connecting from Windows 10

Figure 1.8: WinSCP - File Manager Screen

11 Chapter 1. Accessing Linux from a remote host

1.3 Connecting from Linux or Apple Mac

1.3.1 SSH

By default the majority of Linux and Apple Mac systems use a protocol called
SSH (Secure SHell) to connect to each other. SSH is an encrypted connection
which means that any communication that flows between two machines, are firstly
encrypted before transfer and decrypted after the message is received. By encrypt-
ing all communication between servers or computers, unprivileged people can’t
see what exactly is contained in the message and thus securing communication.
By default (if the services and firewalls are configured to do so) any two Linux
machines can connect to each other over SSH, without the need of a third party
application.

Listing 1.2: Shell Explained

1 #Log into a remote Host (testnode) and enable X Forwarding
2 ssh -XC testnode
3 xclock&
4 [1] 7147
5 exit
6 [1]+ Done xclock
7 Connection to testnode closed.
8

9 #Log into a remote Host (testnode) as a different username (testuser)
10 ssh testuser@testnode
11 xclock
12 Error: Can’t open display:

Listing 1.2 shows how to connect from one Linux machine to another Linux machine
using SSH. This method is the same for a Apple Mac machine to a Linux machine.
Line 2 shows the ssh command with the -XC arguments. The ”X“ argument tells
ssh to enable X Forwarding. The ”C“ option tells ssh to Compress the connection
to save bandwidth on slow networks.
Line 3 executes the xclock command in the background (&).
Line 4 displays the Process Identifier of the xclock command that runs in the back-
ground.
Line 5 exits the connection to the remote host.
Line 6 shows that the background process [1] is also terminated.
Line 10 opens a new ssh connection as a different user (testuser) without X For-
warding
Line 12 displays an error message that X Forwarding is not working, which is to
be expected because the SSH session (on line 10) was not opened with the ”-X”
argument.

1.3. Connecting from Linux or Apple Mac 12

1.3.2 Transferring Files

Linux transfers files and directories through the SSH protocol between Linux
systems. By making use of SSH, all the communication between the two machines
is encrypted. The downside of this is that the encryption and decryption takes up
system resources. This slows the transfer down. However, on a Local Area Network
(LAN) one can easily transfer files from one machine to another using SSH at a
rate of 15MB/s or more.

The command used to transfer files/directories between machines is scp. Listing
1.3 shows how scp is used to transfer files and directories between two systems.

Listing 1.3: Transferring files with scp

1 #Copy a file from the local machine to a remote machine:
2 scp LocalFile.dat testhost:
3 LocalFile.dat 100% 2000KB 2.0MB/s 00:00
4

5 #Copy a file from a remote host to the local machine:
6 scp testhost:RemoteFile.dat .
7 RemoteFile.dat 100% 20MB 9.8MB/s 00:02
8

9 #Copy a local directory and subdirectories to a specific path
10 #on a remote machine
11 scp -r LocalDirectory testhost:/tmp/RemoteDirectory
12 LocalFile.dat 100% 2000KB 2.0MB/s 00:00
13

14 #Copy a remote directory and subdirectories to a specific path on the
15 #local machine
16 scp -r testhost:RemoteDirectory /tmp/FromRemoteHost
17 RemoteFile.dat 100% 20MB 19.5MB/s 00:00
18

19 #Copy a specific file to a specific directory:
20 scp testhost:/etc/hosts /tmp/remote_hosts
21 hosts 100% 7036 6.9KB/s 00:00
22

23 #Copy 2 files from the remote host, to a specific path:
24 scp testhost:/etc/{hosts,group} /tmp
25 hosts 100% 7036 6.9KB/s 00:00
26 group 100% 2915 2.9KB/s 00:00

On line 2 of listing 1.3, the file (LocalFile.dat) is copied to the remote server
(testhost).
On line 2 the full path is not specified and is only defined as a colon (“:”). If the
“:” is not followed by a path, as is the case of line 2, the file is copied to the home
directory of the user on the remote host.
On line 6, the file (RemoteFile.dat) in the home directory (colon followed only by

13 Chapter 1. Accessing Linux from a remote host

a file name) of the remote user is copied to the current directory , which is indicated
by the period (.).
Line 24 copies two files (/etc/hosts and /etc/group) of the remote host to the
/tmp directory on the local host.

1.4 Connecting from a Web Interface

Sections 1.2 and 1.3 describe how to connect to a Linux system from a specific
Windows, Linux or Apple Mac machine. It is also possible to connect to a Linux
server using a Web Interface. This however is not standard procedure for it entails a
great effort from the systems administrator to configure such a system. Fortunately,
such an implementation is available to the research community via the Apache
Software Foundation’s Guacamole gateway.

1.4.1 Apache Guacamole

“Apache Guacamole is a clientless remote desktop gateway. It supports standard
protocols like VNC, RDP, and SSH. We call it clientless because no plugins or
client software are required. Thanks to HTML5, once Guacamole is installed on a
server, all you need to access your desktops is a web browser.”[Apache 2019]

By making use of Guacamole, a user can gain access to the HPC using any
device with a web browser installed. The inner workings of being able to use
Guacamole will not be described in detail but the following services are required
to make it all work: Bash Scripts, LDAP servers, Singularity, MATE Desktop,
Environmental Modules, PBS Torque, VNC Server, HAProxy, Web servers, Firewall
exclusions and off course Apache Guacamole itself.
Figure 1.9 shows a representation of the Guacamole user interface.

1.4. Connecting from a Web Interface 14

Figure 1.9: Guacamole - Graphical Web interface to the HPC

Using the Guacamole system itself should be intuitive to most researchers.
However, due to the complexity of what happens in the background, the user will
have to submit a VNC job to gain access to the VNC interface.

1.4.2 Using Guacamole

Guacamole works together with SSH and VNC to present a user interface. The
SSH terminal provided by Guacamole can be used to execute commands on the
HPC. This is useful when only a few commands have to be executed or when a user
is using a system that does not have an SSH client installed on it.

To make use of a Graphical user interface, one has to have a VNC session
running on the cluster first. To start a VNC session, the user has to execute a
customized script called qvnc. The qvnc command will submit a VNC job to the
queuing system and provide more information to connect using a VNC client. If
one is using the Guacamole interface, then it is not necessary to use any of the
provided configuration options but only to connect to the Guacamole web gateway.

15 Chapter 1. Accessing Linux from a remote host

Listing 1.4 shows the initial commands required to start a VNC session for a
graphical interface.

Listing 1.4: Starting a VNC session

1 #Initialiaze a VNC session:
2 qvnc
3

4 #After the job is submitted, you can monitor the status thereof using
5 # the qstat command:
6 qstat

After executing the qvnc command, the connection to a VNC session should be
available. The user can then use the instructions provided by the qvnc command
or opt to open the Guacamole web gateway. At the time of writing the link to the
Guacamole interface is: https://ui.hpc.ufs.ac.za

While the VNC session is active, any commands or processes running in the
VNC session, will remain running in the background even if the Guacamole
interface or the VNC client is closed. As long as the VNC job remains running, all
the open applications and processes will continue running in the background. If the
user logs out of the Linux system inside the VNC session, the job will be cancelled
and the resources will be freed for other users to make use of.

Guidelines for using Guacamole to connect to the cluster

• A VNC session should be running when attempting to connect to the graphical
interface

• The text based Guacamole interface, PuTTY or any other third party SSH
terminal application can be used to submit the VNC job

• If the VNC session is closed by logging out of the Linux environment itself,
the whole VNC session is terminated

• If the VNC session itself is terminated, all running processes will also be
terminated

• All VNC sessions are started and running through the queuing system

• If the queued job is terminated or runs out of walltime, the VNC session and
all processes are terminated

https://ui.hpc.ufs.ac.za

Chapter 2

Linux General Usage

Contents
2.1 Introduction to Linux . 18

2.1.1 Case sensitivity and restrictions 18
2.1.2 Special Characters . 18

2.2 File System and Permissions 19
2.3 Bash Shell . 21
2.4 Shell Environment . 21

2.4.1 Variables . 21
2.4.2 Auto complete . 24
2.4.3 Shortcuts . 25
2.4.4 Alias . 26

2.5 Getting Help . 28

2.1. Introduction to Linux 18

2.1 Introduction to Linux

2.1.1 Case sensitivity and restrictions

It is important to know that Linux commands, file names and directory
names are case sensitive. This is not the case with other Operating Systems
such as Microsoft Windows. It is therefore possible to have a file called “MyFile.txt”
and “myfile.txt” in the same directory on a Linux system. However, should a user
decide to copy both files in the same directory to a Windows machine, the files will
override each other.

The same case restrictions apply to commands. Most Linux commands are
written in small letters (a..z). Because of the case sensitivity of commands, if a
user types in “LS” instead of ls, the command will fail to execute.

It should be noted that a file and directory can not have the same name in
the same path. For instance, if a user creates a directory called “results”, then the
user will not be allowed to create a file called “results” in the same (current) directory.

A user can create a directory or a file with a space in the name but it is
not recommended. However, if a user absolutely has to create a directory with a
space in it; the user can enclose the directory name in quotes for instance:
mkdir "My Directory With Spaces"
or the user can create the directory by escaping the space character with a leading
backslash (“\”). For instance:
mkdir My\ Directory\ With\ Spaces
If possible; it is recommended to not make use of any special characters, upper case
characters or spaces in file or directory names.

2.1.2 Special Characters

Special Characters are almost any character that is not an alpha numeric character
([0-9], [a-z] or [A-Z]). These characters has special meanings and are interpreted by
the shell as having a special meaning. For instance the "[" character is interpreted
by the shell as a command and not as a normal character. The following table
shows some special characters:

Some Special Characters
colon (:) comma (,) pipe (|)
slash (/) backslash (\) space ()
semi-colon (;) tilde (~) dollar ($)
asterisk (*) quotes (’ ’) double quotes (" ")

19 Chapter 2. Linux General Usage

Special characters should be escaped to not be interpreted by the shell but to
rather just be displayed. One can escape most of these characters by using a back
slash (\) in front of the character.
The interpretation of a quote and a double quote also differs.

Listing 2.1: Interpretation of special characters

1 export Amount=100
2

3 echo "The value of $Amount is $Amount."
4 The value of 100 is 100.
5

6 echo ’The value of \$Amount is $Amount.’
7 The value of \$Amount is $Amount.
8

9 echo "The value of \$Amount is $Amount."
10 The value of $Amount is 100.

Listing 2.1 shows the difference methods the shell interprets commands and
quotes.
On Line 3, the echo command interprets the $Amount as 100 for both $Amount
entries because of the double quotes.
On Line 6, the echo command does not interpret the \$Amount nor the $Amount
entries because of the single quotes.
On Line 9, the echo command does not interpret the \$Amount because it is
escaped but the $Amount is interpreted as a variable and is replaced by the value
100 because of the escape characters and double quotes.

2.2 File System and Permissions

The Linux file system is based on the POSIX standards. Originally, the name
"POSIX" referred to IEEE Standard 1003.1-1988. POSIX is a UNIX standard that
was created in 1988 that stipulates access permissions and standards for UNIX
based Operating Systems and File Systems.
Linux has a number of file system types. Currently Ext4 and Xfs are the norm used
by Linux. Ext4 and Xfs both allow permissions to be set on files and directories.
A user needs to have access to a file to be able to read or write to it. A user
also needs to have executable permission on a directory to change into that directory.

The following File and Directory permissions can be set:

2.2. File System and Permissions 20

File/Directory Permissions:

r : File/Directory is readable
w : File/Directory is writeable
x : File/Directory is executable
- : No permissions are set

A numeric representation of permissions is also used to set permissions with
the chmod command.

Further more, each of the above permissions can be set per owner, group
and world/global. Listing 2.2 reflects the permissions of the same directory, each
line describes a specific part of the permission.

Listing 2.2: Example of a directory’s permissions

1 #The type is a directory
2 drwxr-x---+ 2 testuser hpcuser 3 Jul 7 19:56 LocalDirectory
3

4 #Owner permission (Readable,Writeable,Executable)
5 drwxr-x---+ 2 testuser hpcuser 3 Jul 7 19:56 LocalDirectory
6

7 #Group permission (Readable,Executable, but not executable)
8 drwxr-x---+ 2 testuser hpcuser 3 Jul 7 19:56 LocalDirectory
9

10 #World permission (none)
11 drwxr-x---+ 2 testuser hpcuser 3 Jul 7 19:56 LocalDirectory
12

13 #Owner
14 drwxr-x---+ 2 testuser hpcuser 3 Jul 7 19:56 LocalDirectory
15

16 #Group owner
17 drwxr-x---+ 2 testuser hpcuser 3 Jul 7 19:56 LocalDirectory

To see the permissions of a directory or a file or directory, the command “ls
-l” can be used. Listing 2.3 shows the long listing of directory with the files and
subdirectories in the directory.

Listing 2.3: File Permissions

1 ls -l
2 total 22147
3 drwxr-x---+ 2 testuser hpcuser 3 Jul 7 19:56 LocalDirectory
4 -rw-rw-r--+ 1 testuser hpcuser 2048000 Jul 7 20:00 LocalFile.dat
5 lrwxrwxrwx 1 testuser hpcuser 13 Jul 11 2011 LocalFileLink.dat

-> LocalFile.dat
6 drwxr-xr-x+ 2 testuser hpcuser 3 Jul 7 20:02 RemoteDirectory
7 -rw-r-----+ 1 testuser hpcuser 20480000 Jul 7 20:01 RemoteFile.dat

21 Chapter 2. Linux General Usage

2.3 Bash Shell

Chapter 1 Section 1.1 describes the Linux console. As mentioned the console is the
interface to the Linux Shell. The outline of this document is based on one type of
shell used by most Linux users called Bash.
“Bash is a Unix shell written by Brian Fox for the GNU Project as a free software
replacement for the Bourne shell (sh). Released in 1989, it has been distributed
widely as the shell for the GNU operating system and as the default shell on Linux,
Mac OS X and Darwin” [Wikipedia 2011]
Another shell type is C-Shell. The main difference between the two shells is the
way that environmental variables are set and some other functionality. Section 2.4
explains the working and functionality of the shell environmental variables.

2.4 Shell Environment

2.4.1 Variables

When a new shell is opened, default settings for the session are loaded from the
profile file /etc/profile and the bash configuration script /etc/bashrc. One of the
more important settings loaded from this file is the path. The path is a series
of directories searched when a command is called from the shell. The value of
the search paths are stored in a environmental variable (PATH). The value of the
PATH environmental variable can be viewed by echoing the value to the screen.
Listing 2.4 shows how the echo is used to display the value of the PATH variable.

Listing 2.4: The PATH Environmental Variable

1 echo $PATH
2 ~/bin:/usr/local/bin:/bin:/usr/bin:/home/testuser/bin

Line 1 of Listing 2.4 executes the echo command with the $PATH option.
The value of the variable is displayed on the next line. When a command such as
ls is executed in the shell, the path is searched to find a command (executable file)
firstly in /bin. If the file/command does not exist, the next path is searched. In
this example /usr/local/bin is searched and so on until the command is found. In
this example the command ls is found in /bin/ls.

Listing 2.5: Setting Environmental Variables

1 MY_NAME=Albert
2 MY_SURNAME="van Eck"
3 export MY_NAME MY_SURNAME
4

5 echo "Hello $MY_NAME $MY_SURNAME."

2.4. Shell Environment 22

6 Hello Albert van Eck.
7 unset MY_NAME MY_SURNAME

Listing 2.5 shows how variables are set.
On Line 1, a variable is created and its value is set.
On Line 2, a variable is created and a multiple value (two words) is set.
On Line 3, the variables are exported. A variable needs to be exported to be used
in different newly created sessions.
On Line 5, the variables are used and the output is displayed on the next line.
On Line 7, the variables’ values are removed from memory and the variables itself
are removed.

It should be noted that variables are also case sensitive. This means that a
variable called “MY_NAME” can be set and have a different value from a variable
called “My_Name”. It should also be noted in Listing 2.5 that there is no space
between the variable name, the equal sign (=) and the value. Also note that a
variable name may not contain special characters such as spaces, but the values
may. A variable name may also not start with a digit (0-9) but the name may
contain digits after the first character. A variable name can start with, or contain
underscore(s).

A full listing of all environmental variables can be seen by executing the set
command. Listing 2.6 shows the set command and some of the more useful
variables.

Listing 2.6: Set Environmental Variables

1 set
2 BASH=/bin/bash
3 ...
4 HOME=/home/testuser
5 HOSTNAME=grid-ui.ufs.ac.za
6 LINES=60
7 PWD=/home/testuser
8 USER=testuser
9 ...

Environmental variables are used to store values for further reference. Environ-
mental variables can be used for instance to refer to a user’s home directory in a
shell script. For each user, the user home directory will be different and therefore
the value is not predetermined. The script can reference $HOME instead of the
value /home/testuser.
As mentioned, the profile (/etc/profile) is used to set environmental variables each
time a user logs in or a new session is started. There are also other configuration
files that are loaded each time a session is started. Under /etc/profile.d/ a set of

23 Chapter 2. Linux General Usage

configuration files exist that sets the environment. The profile file (/etc/profile) and
profile configuration files under /etc/profile.d/ are only configurable by the system
administrator.
There are also configuration files that the user can modify to set the user’s environ-
ment. The configuration files are located in the user’s home directory and is “hidden”
from display by starting with a period “˙”. The files are .bashrc and .bash_profile.
If a variable is exported using the export command, that variable can be used in
all new processes that is started from the active session. When a session starts a
new session or process, the session that initiated the process, is the process’ parent
process and the process itself is the child process of the session. To see a listing of
all exported variables, the command export -p can be used. Listing 2.7 shows the
usage of exported variables.

Listing 2.7: Exported Environmental Variables

1 TEST1="ABCD"
2 TEST2="1234"
3 #Export TEST2 to be available to children processes
4 export TEST2
5 #Show exported variables
6 export -p
7 ...
8 declare -x TEST2="1234"
9 ...

10 #Use the varaibles and show their values
11 echo "TEST1=’$TEST1’ TEST2=’$TEST2’"
12 TEST1=’ABCD’ TEST2=’1234’
13 #Open a new bash session (child process)
14 bash
15 #Use the varaibles and show their values
16 echo "TEST1=’$TEST1’ TEST2=’$TEST2’"
17 TEST1=’’ TEST2=’1234’
18 #TEST1 has no value in this child process

2.4.1.1 Referencing Variables

As mentioned, a variable is used to store a value. The variable can be NULL (have
no value), text, a number or the output of a command. This section shows how a
variable is declared and used in a number of ways.

Listing 2.8: Referencing Variables

1 #Declare some variables
2 TEXT="My lucky number"
3 NUMBER=7
4 #Set the DATE variable = the result of a command
5 DATE=$(date +%A)
6 #Display the variables on screen
7 echo "$TEXT for this beautiful $DATE is $NUMBER"

2.4. Shell Environment 24

8 My lucky number for this beautiful Thursday is 7
9 #Display the variables on screen using ${...} to reference a variable

10 echo "${TEXT} for this beautiful ${DATE} is ${NUMBER}"
11 My lucky number for this beautiful Thursday is 7
12 #The results for the previous 2 commands are the same but:
13 #It is necessary to use ${} instead of $, if the text is concatenated
14 echo "$TEXT_for_$DATE_is_$NUMBER"
15 7
16 echo "${TEXT}_for_${DATE}_is_${NUMBER}"
17 My lucky number_for_Thursday_is_7

2.4.2 Auto complete

A fast method of executing commands in the shell is to make use of the built in auto
completion of the shell. To use the auto completion, start typing the command and
press the TAB button. If the command (or part of the command) is unique, the full
command will be auto completed. If the command is not unique, press TAB again.
A list of commands that starts with the part that was typed will be listed on the
screen. Listing 2.9 displays the use of auto complete to complete a command.

Listing 2.9: Auto Complete

1 c<TAB><TAB>
2 Display all 110 possibilities? (y or n)
3 c++ chainsaw cmake cpu
4 c2ph changeparam cmp crash
5 ...
6

7 cl<TAB><TAB>
8 clean-binary-files clear cluster
9 cleanlinks cls

10

11 cle<TAB>
12 clean-binary-files cleanlinks clear
13

14 clear<TAB>
15 clear

On Line 1, c is pressed followed by TAB. Nothing is displayed so TAB is pressed
again. The user is warned that there is 110 different possibilities. After pressing y
all the possible commands are shown.
On Line 7, the user adds an l and TAB is pressed again, nothing is displayed so
TAB is pressed again. This time only five possibilities are shown.
On Line 11, the user adds an e and TAB is pressed again. This time an a is
automatically added to the command because the remaining available possibilities
all start with clea.
On Line 14, a r is added and TAB is pressed. This time the command is complete
and a space is added at the end of the command. This is an indication that the full

25 Chapter 2. Linux General Usage

command is typed.

Auto completion is not exclusive to commands. A user can also use the
same method to automatically complete a path, a file name, an alias or even a
variable name.

2.4.3 Shortcuts

The Linux shell provides some useful shortcuts. Some users prefer not to make
use of shortcuts thinking that it will take too long to learn or that it is not worth
learning the shortcuts in the first place. This section describes a few very useful
shortcuts that will save a user a lot of effort and just enhance the overall use of the
system. Section 2.4.2 described the use of auto completion and the advantage of
using auto completion is apparent.

While using the console, the output on the screen may become cluttered or
distracting. An easy method of clearing the console screen is to use the Ctrl+l
(Control and ’el’) key combination. A user may press the Ctrl+l combination
even while typing a command to have the screen cleared. If a user presses the key
combination while typing a command, the screen will be cleared and the input of
the command will continue on the first line of the console where it was before the
key combination was pressed.

If a user starts typing a command and wants to cancel the command with-
out executing the command and without deleting the whole command, the user
can press the Ctrl+c. The shell will just ignore whatever was typed and go to the
next input line.

An other useful shortcut key combination is Ctrl+d . This shortcut will at-
tempt to exit the current application or session. This is useful because some
applications require a user to type in “exit”, some applications require a user to
press “q” and other require a user to type “quit” to exit the application. This
functionality can be tested by typing in the cat command without any options.
If the user types something and press enter, the user input is just returned to the
screen and the user is prompted for the next command. The best way to exit the
“program” is to press Ctrl+d.

The shell holds a list of executed commands in a history file. The history
file is saved to a hidden file (.bash_history) in the user’s home directory. The
history file works more or less like the auto completion feature described in the
previous section by completing the command as the user is typing in the command.
The difference is that the history types in the full command and all the options

2.4. Shell Environment 26

that the user used with the command where as the auto complete feature only auto
completes the active part of the command or path. To use the the history, the user
can press Ctrl+r . The user will then enter a prompt that asks the user to type in
the command. As the user types in the command, the last command that the user
typed which reflects the command that the user is typing, is displayed. The user
may continue to type in the command if the command displayed is not the one the
user wants to use. When the required command is displayed on the screen, the
user can press enter to use the command or press Ctrl+c to cancel the command.
To view a list of the commands held in the history, the user can type the history
command. A list of previously used commands are displayed.

All the commands saved in the history file can be accessed by browsing through
the history list using the up and down arrows. When the required command is
displayed on the screen, the user can simply press enter to re-execute the command.
Optionally the user can also press the left or right arrows to edit the command
first.

An other way to re-execute a command previously used is by prepending it
with an exclamation mark (!). When using this feature, the user won’t be
able to search through the list of commands in the history. The last used
command that starts with the part of the command typed, will be executed. For
instance if the user typed the wget command earlier and types !wg and presses en-
ter, the last command that started with “wg” (wget http://......) will be executed.

A user may also want to scroll through previous output screens. To scroll
up to previous screens Shit+Page Up can be used. To scroll down, Shift+Page
Down can be used. As soon as the user starts typing again, the screen will
automatically jump back to the last output screen.

Sometimes a user starts an application and needs to send the application
to the background. The best method to start an application in the background
is to add an ampersand (&) at the end of the line. However, if the user already
started the application and want to send it to the background, the user can make
use of the Ctrl+z key combination. When Ctrl+z is pressed, an identifier in square
brackets are displayed followed by a plus sign (to show the last active process), the
word “Stopped” and the command. To continue the process in the background, the
user can type in the background command: bg . When the user wants to return
the process to the foreground, the user can use the foreground command: fg .

2.4.4 Alias

Linux has a method to predefine options or a set of commands that are regularly
used called an alias. An alias creates a command that can be used to execute a

27 Chapter 2. Linux General Usage

set of instructions or commands with predefined options. For instance, on most
Red Hat Linux systems a predefined alias ll exits. The alias ll calls the command
/bin/ls with “-lh --color=tty” as the parameters. This allows a user to just type ll
instead of typing in /bin/ls -lh --color=tty .
Aliases can also be used to override the default behaviour of a command. For
instance Listing 2.10 defines an alias called grep. If the alias exists, that alias will
be called each time the user types in grep.
At the end of Section 2.4.1 on page 21, it is mentioned that two configuration files
can be used to set environmental variables. These files can also be used to store
aliases in. Listing 2.10 shows how an alias can be created, viewed, used and finally
destroyed.

Listing 2.10: Using an alias

1 #Define the alias ’grep’:
2 alias grep=’/bin/grep --color’
3

4 #Show a list of all defined aliases:
5 alias
6 ...
7 alias cls=’/usr/bin/clear;pwd’
8 alias cp=’/bin/cp -ivr’
9 alias grep=’/bin/grep --color’

10 alias l=’ls -al’
11 alias ll=’/bin/ls -lh --color=tty’
12 alias ls=’ls --color=tty’
13 alias nodes=’/usr/bin/pbsnodes |/bin/grep -iv status|/bin/grep node0 -

A 1’
14 ...
15

16 #Which ’grep’ command will be used?
17 which grep
18 alias grep=’/bin/grep --color’
19 /bin/grep
20

21 #Use the ’grep’ alias
22 grep "testuser" /etc/passwd
23 testuser:x:27313:10000::/home/testuser:/bin/bash
24

25 unalias grep
26 #Which ’grep’ command will be used?
27 which grep
28 /bin/grep
29

30 grep "testuser" /etc/passwd
31 testuser:x:27313:10000::/home/testuser:/bin/bash

2.5. Getting Help 28

Listing 2.10 on page 27, shows the following:
On Line 2, a new alias for grep is created.
On Line 5, the command alias will display a list of defined aliases.
On Line 7, the alias cls is defined. The alias will execute two commands (clear and
pwd).
On Line 9, the ’newly’ created alias grep is shown.
On Line 17, the command which is called to display which grep command will be
executed.
On Line 22, the grep alias is used with additional parameters.
On Line 23, returns the result of the grep command with the searched string printed
in red because the grep alias used the “--color “ parameters.
On Line 25, the grep alias is destroyed.
On Line 27, the which command is called again, this time no alias is displayed,
only the command itself.
On Line 30, the grep command is called again but this time grep does not have
predefined parameters that the alias provided.
On Line 31, the same results are returned as on Line 23 but without colour format-
ting.

2.5 Getting Help

In Linux to see more information regarding the usage of a certain command, one
can make use of the man command. The man command opens the manual pages
of the specific command, it the manual pages are available. For instance to get more
help on how to use the ls command, the user can type man ls.
Another method of getting help is to type the command and add the --help pa-
rameter to the command. For example to get a brief listing of the options that the
command ls uses, the user can execute ls --help. Listing 2.11 shows the --help
option for the ls command.

Listing 2.11: Brief command line help

1 ls --help
2 Usage: ls [OPTION]... [FILE]...
3 List information about the FILEs (the current directory by default).
4 Sort entries alphabetically if none of -cftuvSUX nor --sort.
5

6 Mandatory arguments to long options are mandatory for short options
too.

7 -a, --all do not ignore entries starting with .
8 -A, --almost-all do not list implied . and ..
9 --author with -l, print the author of each file

10 -b, --escape print octal escapes for nongraphic
characters

11 ...

Chapter 3

Linux Commands

Contents
3.1 Commands Overview . 30
3.2 Introduction . 30

3.2.1 Command return codes . 31
3.2.2 Logical AND/OR testing . 32

3.3 Using output as input . 33
3.4 Command Examples . 34

3.4.1 ssh . 34
3.4.2 scp . 35
3.4.3 rsync . 35
3.4.4 cd . 36
3.4.5 pwd . 36
3.4.6 ls . 37
3.4.7 mkdir . 37
3.4.8 cp . 38
3.4.9 mv . 38
3.4.10 rm . 38
3.4.11 cat . 39
3.4.12 sort . 40
3.4.13 echo . 41
3.4.14 more . 41
3.4.15 less . 42
3.4.16 head . 42
3.4.17 tail . 42
3.4.18 cut . 43
3.4.19 find . 43
3.4.20 grep . 43
3.4.21 screen . 44
3.4.22 info . 45

3.5 Mathematical Arithmetic . 45

3.1. Commands Overview 30

3.1 Commands Overview

This chapter describes some of the commands that are used on a regular basis. In
Chapter 2, the use of the console was described with examples of some commands
such as alias and ls. This chapter will describe some of the commands and how
they are used. Some commands such as rsync, and screen may need to be installed
by the systems administrator to be able to use them. The other commands should
be installed on most installations.

3.2 Introduction

A command can be executed by typing the command followed by options and pa-
rameters and pressing enter.
See Listing 3.1

Listing 3.1: Basic command execution

1 ls -l /var/log

In Listing 3.1 ls is the command. “-l” is the options and /var/log is a parameter.
It is possible to switch parameters and options for some commands but it should be
attempted to keep to a specific convention.

Most commands can have the options combined in one string such as in Listing
3.2.

Listing 3.2: Using multiple options for a command

1 ls -l -a -r -n -t /var/
2 # ...is the same as
3 ls -larnt /var/
4 # One can also switch the order of most options, if permitted.
5 ls -altrn /var/

Also note that the options are Case Sensitive. The shell interpreter does not mind
the number of spaces between options but a space should be used to separate options
and parameters.

Listing 3.3: Using spaces in the shell

1 ls -al /var
2 # ...is the same as...
3 ls -al /var

To perform a number of commands in one line, a semi-colon “;” can be used to
separate the commands.

Listing 3.4: Multiple commands on one line

31 Chapter 3. Linux Commands

1 clear;cd /var/log;pwd;cd ~;pwd
2

3 /var/log
4 /home/testuser

In Listing 3.4 Line 1, the command will clear the screen.
Change the directory to /var/log.
Display the directory has changed to /var/log.
Change to the user’s home directory and
lastly display that the current working directory is in fact the user’s home directory.
This is useful especially in cases where a long period of time will elapse before the
next command will be executed. For instance when compiling a kernel, Listing 3.5
shows some steps taken when compiling a kernel.

Listing 3.5: Commands used to compile a kernel (taking a long time)

1 make
2 make modules
3 make modules_install
4 make install

If the commands in Listing 3.5 is executed, 2 to 30 minutes may pass between each
step. If the user does not want to wait for the whole duration to execute the next
command, the commands may composed into a single line as displayed in Listing
3.6.

Listing 3.6: Commands used to compile a kernel (on one line)

1 make;make modules;make modules_install;make install

3.2.1 Command return codes

Every command that is executed in a shell, should return an error/exit code. By
default an exit code of zero ’0’ will be returned if a command completed successfully
and another value will be returned when a command failed. To see the code returned,
one can look at the value of the variable “$?”.

Listing 3.7: Displaying command return codes

1 tail -n 1 /etc/passwd
2 vanecka:x:500:500::/home/vanecka:/bin/bash
3 echo $?
4 0
5 tail -n 1 /var/log/messages
6 tail: cannot open ’/var/log/messages’ for reading: Permission denied
7 echo $?
8 1

3.2. Introduction 32

3.2.2 Logical AND/OR testing

Section 3.2.1 mentions that each command executed, returns a “return code”. It
can be helpful to base the execution of the next command upon the success of the
previous command. For instance, if the command was successful, execute a specific
command. An other approach could be to execute a command if the previous
command was unsuccessful. To execute a command if the previous command was
successful, the AND operator (&&) can be used. However, if the command failed
or was not successful, the OR operator (||) can be used.

Listing 3.8: Logical OR example

1 tail -n 1 /var/log/messages || echo "Could not be executed"
2 # The above statement reads: get the last line of /var/log/messages OR

write error to the screen

Listing 3.9: Logical AND example

1 cd /tmp && echo "Command successful"
2 # The above command will change to the /tmp directory and if it was

successful, write a comment to the screen.

To take full advantage of this logical testing, Listing 3.6 on page 31 should be
rewritten to only execute the next command if the previous command was successful.
Listing 3.10 shows the better alternative to compile the kernel.

Listing 3.10: Compiling the kernel using logical tests

1 # Rewriting the following, testing for error codes: make;make modules
;make modules_install;make install

2 make && make modules && make modules_install && make install
3 # The Above command will execute each command after the previous

command completed successfully.

3.2.2.1 Command Syntax

When looking at the help files of a certain command, you will come across the
following usage statement:
command_statement [option0] {option1|option2} ...
In this example above the following are constrains upon the command:

* Anything typed without brackets are mandatory when calling the com-
mand. (command_statement)
* Text within square brackets are optional. ([option0])
* Options between curly “{}” brackets separated by a pipe “|” means that the user
has to choose one or more of the options. ({option1|option2})
* Text between angle brackets “< >” indicates that you must replace the text with

33 Chapter 3. Linux Commands

the needed value or name.
* The ellipses “...” means “and so forth“

Also note that if multiple options exist, the user are not limited to just one
option but he/she can combine them together.

Listing 3.11: Command syntax

1 ls -a #Shows a listing of all files and directories, including
hidden ones

2 ls -l #Shows a listing in a long format - showing more information
about files/directories.

3 ls -h #Shows file size in human readable form, but only works
together with the -l option

4 ls -alh #Shows all the above listing information.

3.3 Using output as input

The shell has a very powerful feature that allows a user to use one command’s output
as the input of the next command. To use the output of the previous command, the
two (or more) commands are split using the pipe character (|).
For instance Listing 3.12 shows how a user can perform a listing of a directory using
ls, and search for a specific string (”host“) using the grep.

Listing 3.12: Using one command’s output as input

1 ls /etc/ |grep host
2 ghostscript
3 host.conf
4 hosts
5 hosts.allow
6 hosts.deny

3.4. Command Examples 34

3.4 Command Examples

This section shows a few commands used on a regular basis. More options are
available than listed here.
For more options on a command execute man followed by the command.
Eg man ls

3.4.1 ssh

The ssh command is used to connect to a remote host over a Secure Shell. The
communication between the two nodes are encrypted with SSL certificates. This
means that a third party can’t intercept communication to retrieve passwords or
data. The ssh command can also be used to execute commands on a remote host.
Chapter 1 Section 1.3.1 on page 11 also shows some examples.
When using SSH, the user will be prompted to provide a password for the remote
machine. This is the standard operation when connecting to a remote machine. It
is also possible to create SSH keys that can be used to authenticate a user, without
having the user type in a password. This method is very secure since anyone that
wants to use this method, has to first have the private key of the user to be able to
connect to the remote server.

Listing 3.13: Example: ssh

1 # Connect to a remote host as the same user that is currently logged
in

2 ssh remotehost.name.domain
3 # Connect to a remote host as a the root user
4 ssh root@remotehost
5 # Execute a command (df -h) on a remote host, as the root user
6 ssh -n root@remotehost "df -h"
7 # Pipe the content of a file to an SSH command
8 cat /etc/hostname | ssh remotehost " cat - >> /tmp/remote_hostname"

Most of the above commands are straight forward and self explanatory when looking
at the preceding comments. However line 8 is a bit more complex. In this line,
the content of /etc/hostname is captured by the cat command. The content is
then piped to the ssh command. The ssh command itself, captures the content
that was sent by the first cat command and redirect that content to the cat -
- command on the remote host. That "input" is then redirected (>>) to a file
called /tmp/remote_hostname on the remote host. A much simpler method to
perform this would have been to use the scp command as explained Section 3.4.2,
to secure copy the file from the local host to a different name on the destination
host. However the above method was used to show how standard output from one
system can be sent to standard input on a remote machine and eventually redirected
to a file on the remote machine. The cat command is explained in Section 3.4.11
with an example (line 4 in listing 3.24) of how it is used in a similar way as shown

35 Chapter 3. Linux Commands

in listing 3.13 line 8.

3.4.2 scp

The Secure Copy command (scp) is used to copy files from one machine to another.
The data transfer is also SSL encrypted. The Secure Copy command can be used
to copy files and directories. Chapter 1 Section 1.3.2 on page 12 also shows some
examples.

Listing 3.14: Example: scp

1 # Copy LocalFile.txt to a remote host
2 scp LocalFile.txt /home/current_user/
3 # Copy /home/current_user/LocalFile.txt to a remote host, to the home

directory of root, as root
4 scp /home/current_user/LocalFile.txt root@remote_host:/root
5 # Copy /home/current_user/RemoteFile.txt from a remote host to

LocalFile.txt in the current working directory
6 scp remote_host:/home/current_user/RemoteFile.txt LocalFile.txt
7 # Copy the whole home directory of root (-r = recursively), from a

remote host to a backup folder
8 scp -r root@remote_host:/root /backup

3.4.3 rsync

The rsync command is used for a similar purpose and in a similar way as the scp
command. The rsync command also utilises the SSH protocol to transfer data
from one machine to and from another. The major difference between rsync and
scp, is that rsync can determine which files should be copied over and which files
can be skipped. The rsync command uses a few constraints to determine whether
the source and destination files are the same or whether the files should override
each other. The rsync command can also copy important file permissions such as
SELinux context parameters, whereas scp can not transfer these special permissions.

Listing 3.15: Example: rsync

1 #Copy the whole /etc directory from the remote host to the /backup/etc
directory:

2 rsync root@remote_host:/etc /backup
3 #Copy the subdirectories and files inside /etc from the remote host to

the /backup directory:
4 #Note, the only difference from the previous command is the trailing

/ after the /etc
5 rsync root@remote_host:/etc/ /backup
6 #Only show which files would be copied without actually copying the

files
7 rsync -dry-run root@remote_host:/etc/ /backup
8 #It is also useful to see the progress as the files are transferred:
9 rsync -progress root@remote_host:/etc /backup

3.4. Command Examples 36

10 #If you have possibly modified some files and don’t want to override
it with older versions, use the -u option:

11 rsync -progress -auv root@remote_host:/work /working_files
12 #Finally, lets copy all the files and directories, keeping SELinux

permissions
13 rsync -progress -av -HAX root@remote_host:/etc /backup

In Listing 3.15 line 2, the remote /etc directory and its subdirectories are copied to
/backup/etc.
On line 5, the files and directories inside the remote /etc are copied to /backup
but they are not contained in the /backup/etc directory, instead they are copied
loosely into the /backup directory.
On line 7, no files are copied, instead only a list of the files that would have been
copied is displayed.
Line 11 shows how to copy files but ignore files where the destination file has been
modified/updated (-u) and is newer than the source files.
Line 13 have a few more options to preserve the SELinux context etc. The -H
option preserves Hardlinks. The -A option preserves the ACLs and permissions.
The -X option preserves the eXtended attributes such as the SELinux context.

3.4.4 cd

The cd command is used to Change Directory to another location.

Listing 3.16: Example: cd

1 #Change the working directory to /etc/init.d
2 cd /etc/init.d
3 # To change to the last working directory:
4 cd - # (That’s cd minus)
5 # To change to your home directory:
6 cd
7 # ...or...
8 cd ~ # (That’s cd Tilde)
9 # ...or...

10 cd $HOME
11 # To go one directory up
12 cd ..
13 # To go three directories up
14 cd ../../..

3.4.5 pwd

The pwd command Prints the current Working Directory. No useful options exists
for this command.

Listing 3.17: Example: pwd

37 Chapter 3. Linux Commands

1 #Change the working directory to /etc/init.d
2 cd /etc/init.d
3 pwd
4 /etc/init.d
5 cd ..
6 pwd
7 /etc
8 cd $HOME
9 pwd

10 /home/testuser

3.4.6 ls

The ls command is used to list the contents of a directory. A wide range of options
exist for this command but some of the more useful ones are listed in Listing 3.18.

Listing 3.18: Example: ls

1 # Show a full listing of the /home/user directory:
2 ls -l /home/testuser
3 drwxr-x---+ 2 testuser hpcuser 3 Jul 7 19:56 LocalDirectory
4 -rw-rw-r--+ 1 testuser hpcuser 2048000 Jul 7 20:00 LocalFile.dat
5 ...
6 # Show a long listing in human readable file size format:
7 ls -lh
8 drwxr-x---+ 2 testuser hpcuser 3 Jul 7 19:56 LocalDirectory
9 -rw-rw-r--+ 1 testuser hpcuser 2.0M Jul 7 20:00 LocalFile.dat

10 # Show all files, including hidden ones:
11 ls -a
12 . .bash_profile LocalFile.dat RemoteFile.dat
13 .. .bashrc LocalFileLink.dat .ssh
14 ...
15 # Show results in a reversed order:
16 ls -r
17 RemoteFile.dat RemoteDirectory LocalFileLink.dat LocalFile.dat
18 # Show sub folders Recursively:
19 ls -R
20 ./LocalDirectory:
21 LocalFile.dat

3.4.7 mkdir

The mkdir command is used to Make a new Directory.

Listing 3.19: Example: mkdir

1 # Create a new directory named DataFiles in /home/testuser/
2 mkdir /home/testuser/DataFiles
3 # Create a new sub directory with its parent directories as needed (

create parents if it doesn’t exist):

3.4. Command Examples 38

4 mkdir -p /home/testuser/new_parent/new_subfolder/new_directory

3.4.8 cp

The cp command is used to copy files from one location to another on the same
machine. If a file already exists the system may ask the user if the file should be
overwritten. This is not the default behaviour on most systems, but it may be
configured to automatically override files by prompting the user with the -i flag.

Listing 3.20: Example: cp

1 # Copy /etc/passwd to file1 - override file1 with the contents of /etc
/passwd:

2 cp /etc/passwd file1
3 # Copy file1 to file2 preserving the file permissions
4 cp -p file1 file2
5 # Copy /var/log directory to the current directory recursively,

including sub-directories and files (Note the full stop)
6 cp -r /var/log .
7 # Copy files recursively and show what is happening verbosely:
8 cp -rv /var/log .

3.4.9 mv

The mv command is used to move (cut and paste) a file/folder from one location
to another. It can also be used to rename a file/folder.

Listing 3.21: Example: mv

1 # Move a folder from a mounted volume to a user’s home directory:
2 mv /mnt/usb/folder ~/
3 # Move only the contents of a folder to the current location:
4 mv /mnt/usb/folder/*.
5 # Move files, while showing verbosely what files are moved to the

screen:
6 mv -v /mnt/usb/folder .
7 # Rename a file or directory to another name
8 mv old_directory new_name

3.4.10 rm

The rm command is used to remove files and can also remove directories. Use
caution when removing files from the system. A system may be configured using
the -i option to interactively ask if a file should be removed.

Listing 3.22: Example: rm

1 # Remove a file called unwanted from the current location:

39 Chapter 3. Linux Commands

2 rm unwanted
3 # Remove files starting with old, forcing removal without prompting

for confirmation:
4 rm -f old*
5 # Remove a folder recursively and forcing no confirmation:
6 rm -rf foldername

3.4.11 cat

The Concatenate command is used to display the contents of a file to the screen.
When the cat command is executed against a file, the whole file’s content will scroll
over the screen. The full advantages of the cat command can only be gained by
using it together with some other commands. One can for instance append the
contents (or part thereof) of one file to the end of another file by redirecting the
output to another file. Some of the examples in Listing 3.23 may look strange but
going through this text, these commands will become more easier to interpret and
can save a lot of time.

Listing 3.23: Example: cat

1 # Show the contents of /etc/passwd:
2 cat /etc/passwd
3 # Copy the contents of /etc/passwd to a new file called MyUsers:
4 cat /etc/passwd > MyUsers
5 # Append the contents of /etc/group to the end of file MyUsers:
6 cat /etc/group >> MyUsers
7 # Display the contents of the /etc/passwd file, but only show the

lines containing the word "bash"
8 cat /etc/passwd | grep bash

The above listing shows some of the basic uses of the cat command and how to
redirect the output to other commands such as grep. This is however only part of
the use for the cat command. The cat command can also be used to create what
we refer to as a Here Document . A here document is a file that is generated by
redirecting either user input or predefined content into a file. The following listing
shows how the cat command can be used to redirect content to new files:

Listing 3.24: Example: using cat to create files

1 #Read input from the standard input (aka the keyboard) and save to a
file:

2 echo "Type a list of your friends’ names."
3 echo "Press Cntrl+c when done typing, or type END"
4 cat - >> friends.txt <<END
5 chandler
6 joey
7 rachel
8 monica
9 phoebe

3.4. Command Examples 40

10 ross
11 END
12 #Create a file called other.txt with a few names in it;
13 cat > other.txt <<EOF
14 jake
15 pete
16 mike
17 andrew
18 John
19 EOF
20 #Add two more names to the file, without overriding the existing

content:
21 cat >> other.txt <<EOF
22 ellen
23 louis
24 EOF

In listing 3.24 on line 4, the cat command is called with a minus/dash (-) that tells
cat to read user input from the keyboard. The input is then redirected (>>) to
a file called friends.txt up to the point when the user types the word END on its
own line or until the user presses control+c. Lines 5 to 11, was user input in this
case.
In lines 13 through 19, a "here document" is created using the cat command. If the
file did not exist, it would have been created. If the file existed, the content would
have been overridden with the new content.

3.4.12 sort

The Sort command is used to sort output. The results of the sort command can be
saved directly into a new file, or it can sort the output from another command and
redirect the output to a file. The result of sort will be displayed to the standard
output (screen).

Listing 3.25: Example: sort

1 # Display the contents of Test1.txt and sort the output
2 cat Test1.txt | sort
3 # Display the contents of Test1.txt and sort the output in reverse

order
4 cat Test1.txt | sort -r
5 # Display the contents of Test1.txt, sort the output and write the

results in Sorted.txt
6 cat Test1.txt | sort > Sorted.txt
7 # Sort the file Test2.txt and write the results to Results.txt
8 sort Test2.txt > Results.txt
9 # Sort the file Test2.txt and write the results to Results.txt

10 sort Test2.txt -o Results.txt
11 # Display the contents of Names.txt and display the unique names in

the file

41 Chapter 3. Linux Commands

12 sort Names.txt -u

3.4.13 echo

The echo command is normally used to display text to the screen. Sometimes users
will also use the echo command and redirect the output to a file. There are a few
options or parameters that can be passed to the echo command but the more used
ones are the -n and -e options. The -n option is used to not print the trailing
newline character. This is useful when for instance a user is prompted to input a
value in a script and have the user type the value directly next to the prompt instead
of having the user type the value in the next line. It is also useful if you want to
print some text using echo and then print more text using a new echo command
that is printed next to the previous output. Another useful option is the -e option.
This will tell the interpreter to interpret for instance "\n" as a new line character
or "\t" as tab instead of just printing "backslash n or t".

Listing 3.26: Example: echo

1 echo "Hello world"
2 # Prints Hello world to the screen.
3 echo "Hello there. I am $USER."
4 # A system environmental variable ($USER) is included in the statement

:
5 # This variable name will be replaced in the output with its value.
6 # Thus what you will see on the screen is the following :
7 [john_doe@localhost ~]$ echo "Hello there. I am $USER."
8 Hello there. I am john_doe.
9

10 #Add a line "Mike was here" at the end of a file:
11 echo "Mike was here" >> /home/mike/myfile.log

3.4.14 more

The more command is used to browse through the contents of a file, from top to
bottom. This scrolling is only done in one direction from the top of the file and the
user can not return to the previous screen. This command is useful if one wants
to view the content of a large text file and read through it. To move around with
the more command, one can press ”return“ on the keyboard to move down one line.
To move down a full page, one can press the ”space bar“. To exit this view press
”q/Q“. To start an editor at the current line, press ”v“. An even more useful use for
this command is to scroll the output of the screen. If for instance a listing of the
contents of /etc is displayed, one will find that the output scrolls over the screen too
fast to read. By redirecting the output of the ls command to the more command
(by using pipe), one will be able to go through the listing more conveniently.

3.4. Command Examples 42

Listing 3.27: Example: more

1 ls /etc | more

3.4.15 less

The less command has exactly the same use as the more command but more
functionality. The less command also displays the content of a file, but one can
browse up and down in the file. The less command is also based on the user’s
editor’s usage. A user’s default editor may be set to vi. Thus, some of the features
of vi also exists in less. Unlike more and vi, less does not open the whole file at
once. Allowing the user to open a very big file with the least amount of overhead.
It is a good idea to use less to open a big log file or a big output file rather than
using vi or more. Less, like more, can also be used to scroll the output of the
screen with ease. For instance, one can do the same directory listing as in Listing
3.27, but one will be able to scroll up and down by using less.

Listing 3.28: Example: less

1 # This example displays the contents of the /etc directory and allows
browsing through the output in both directions.

2 ls /etc | less

3.4.16 head

The head command is used to view the first few lines of a file. A specific number
of lines from the top of a file can be specified.

Listing 3.29: Example: head

1 # Show the first ten lines of the /etc/passwd file
2 head /etc/passwd
3 # Show the first thirty lines of the /etc/passwd file.
4 head -n 30 /etc/passwd

3.4.17 tail

The tail command is the opposite of the head command but it has one additional
feature. The tail command will display the last few lines of a file to the screen. One
added feature that the head command lacks is the option to follow the content of
a file. This means that while a file grows, the output is scrolled on the screen. So
one will be able to see the last few lines of for instance a log file as events are logged
to the file. This is very useful to monitor an output file on screen, while it is being
created.

43 Chapter 3. Linux Commands

Listing 3.30: Example: tail

1 # Display the last twenty lines of the /etc/passwd file.
2 tail -n 20 /etc/passwd
3 # Display the last ten lines of the output.file file and displays the

lines as they are being added to the file.
4 tail -f output.file
5 # Show the amount of free space for the mounted file systems, skipping

the first header lines.
6 df -h | tail -n +2

3.4.18 cut

The cut command is used to extract certain parts of a text field. One could use cut
to split the output on a fixed length or on a specific separator.

Listing 3.31: Example: cut

1 # Show characters 1 to 10 of each line from /etc/passwd
2 cut -c1-10 /etc/passwd
3 # Show only column 1 and 6 of /etc/passwd, using ":" as delimiter
4 cut -d: -f1,6 /etc/passwd
5 # Show who is logged in to the system, show characters 1-8 and 18 to

the end
6 who| cut -c1-8,18-

3.4.19 find

The find command is used to search for files and folders. A user can search for files
by Eg. File name, file size, owner or permissions.

Listing 3.32: Example: find

1 # Search for a file named myfile.txt from the root file system
throughout the whole system

2 find / -name myfile.txt -type f
3 # Finds all directories starting with the name "test" in the current

directory
4 find . -name test* -type d
5 # Find all files in /tmp that are less than one megabyte big
6 find /tmp -size -1M -type f
7 # Find all the files larger than one gigabyte and delete it
8 find /tmp -size +1G -type f -exec rm -f ’{}’ \;
9 # Find all files/directories that belongs to the user john.

10 find / -user john

3.4.20 grep

The grep command is used to search for a certain string inside another string. The
grep command can be used to find a part of text inside files too. This command

3.4. Command Examples 44

makes use of special characters (Page 18 Section 2.1.2) as well as regular expressions
(described in Chapter 5).

Listing 3.33: Example: grep

1 # Look through all the files in /home/sarah and print this phrase and
the filenames of the files containing this exact text phrase.

2 grep "The man with the red hat" /home/sarah/*
3 # The following command will display all the lines of the file called

logfile.log that contains the word error.
4 # The -i option indicates that the search is performed case-

insensitive.
5 # This means that results that could be found, may contain something

like ERROR, errors, Error and Terrorist.
6 grep -i "error" logfile.log
7 # Perform a listing of /var/log, show all results that contain a ’s’

and highlight the result where the ’s’ was seen.
8 ls /var/log |grep --color s
9 # Perform a listing of /var/log and show all the results that DOES NOT

contain a ’s’
10 ls /var/log |grep -v s
11 # Display the contents of /etc/passwd, look for lines that begin with

"r"
12 cat /etc/passwd |grep "^r"
13 # Display the contents of /etc/passwd, look for lines that end with "

nologin"
14 cat /etc/passwd |grep "nologin$"

3.4.21 screen

Some users may execute commands or applications that runs for a very long time.
If the user starts the application and closes the terminal before the application is
done, the application will be killed and execution will stop. One way to overcome
this problem is to run the applications in a screen session. The screen command
opens a special session that is not closed when the parent process is closed.

Listing 3.34: Example: screen

1 #See if there is a screen session already opened
2 screen -ls
3 No Sockets found in /var/run/screen/S-testuser.
4 screen
5 #The screen is cleared
6 #See if there is a screen session already opened
7 screen -ls
8 There is a screen on:
9 4135.pts-5.grid-ui (Attached)

10 1 Socket in /var/run/screen/S-testuser.
11 #Now the user has an active session and start the application
12 test_application
13 001 - Thu Jul 14 14:15:18 SAST 2011 - Still running

45 Chapter 3. Linux Commands

14 002 - Thu Jul 14 14:15:19 SAST 2011 - Still running
15 003 - Thu Jul 14 14:15:20 SAST 2011 - Still running
16 #When the application starts, the user can close the session
17 #the application will continue in the background
18

19 #Now the user can re-connect to the screen session:
20 screen -ls
21 There is a screen on:
22 4135.pts-5.grid-ui (Detached)
23 screen -x 4135
24 075 - Thu Jul 14 14:16:33 SAST 2011 - Still running
25 076 - Thu Jul 14 14:16:34 SAST 2011 - Still running
26 077 - Thu Jul 14 14:16:35 SAST 2011 - Still running
27 tail -n1 /tmp/${USER}_sleeptest
28 100 - Thu Jul 14 14:17:08 SAST 2011 - Done

3.4.22 info

More information regarding commands can be found using the manual pages or
by typing in the info command. The info command can be used by typing in the
command info followed by the command that you need more information on. The
info pages also have sub sections. If a line starts with an asterisk (*), you can press
enter on that line to follow the sub section. To return to the upper section, press
backspace.

Listing 3.35: Example: info

1 info bash

3.5 Mathematical Arithmetic

There is a number of methods to perform some mathematical equations. Two more
used ones are the let command and making use of double parentheses (()). The
format for both these commands are similar. We are going to focus more on the
double parentheses. The sequence in which precedence is given to the execution
of a mathematical equation is determined by the order in the following table. The
following table shows the operators in order of decreasing precedence in equations.

3.5. Mathematical Arithmetic 46

Mathematical Operands
var++, var-
-

Post-increment and post-decrement. Interpret the value of integer vari-
able and then add or subtract one

++var,
--var

Pre-increment and pre-decrement. Add or subtract one and then inter-
pret the value

+expr,
-expr

Unary plus or unary minus. Unary plus returns the value as if it was
multiplied by one. Unary minus returns the value as if it was multiplied
by negative one

! Logical negation, Logical negation returns true if the operand was false
and returns false if the operand was true

** Exponentiation
*, /, % Multiplication, Division, Remainder (modulo)
+, - Addition, Subtraction
<=, >=, <,
>

Comparison: Less than or equal to, Greater than or equal to, Less than,
Greater than

==, != Equality, Inequality
&& Logical AND
|| Logical OR
expr1 ?
expr2 :
expr3

If expr1 is true, return expr2. If expr1 is false, return expr3.

=, *=, /=,
%=, +=,
-=, <<=,
»=, &=,
^=, |=

Assignment. Assign the value of the expression that follows the operator,
to the variable that precedes it. If an operator prefixes the equals sign,
that operation is performed prior to assignment. For instance, let "var
+= 5" is equivalent to let "var = var + 5". The assignment operation
itself evaluates to the value assigned

When the following commands are executed, the "math" part is not executed as
expected:

Listing 3.36: Expecting Interpreter to return math equation’s result

1 myvar="5 + 5"
2 echo $myvar

In listing 3.36, one may expect the interpreter to return 10 in the last echo
command; instead the value "5 + 5" is returned to the screen. To get the correc-
t/expected result, one can first declare the variable as an integer and then set its
value, as indicated by listing 6.19.

Listing 3.37: Defining a variable’s type as integer and executing an equation

1 declare -i myvar
2 myvar="5 + 5"

47 Chapter 3. Linux Commands

3 echo $myvar

Listing 3.37 will return the expected value (10) to the screen due to the fact that
the variable’s type was first set to integer. Another method to have the result of an
arithmetic equation be assigned to a variable, is as follows:

Listing 3.38: Setting a variable’s value equal to the result of an equation

1 #Note the space after and before the parentheses
2 #The space before and after = is optional inside the parentheses
3 ((myvar = 6 + 6))
4 echo $myvar

Listing 3.38 shows a method that uses double parentheses to perform an equation
and save the value thereof to a variable. It is also possible to perform an equation,
without saving the value to a variable. Listing 3.39 shows how an equation can be
executed and the result be shown, without saving it to a variable:

Listing 3.39: Basic equation, only showing result without setting a variable’s value

1 echo " 7 x 7 = $((7 * 7)) is equal to 7 squared: $((7 ** 2)) "

Listing 3.39, performs two equations and returns the results to the screen. In con-
trast, the following example (3.40) shows how two variables are set and the result
of the whole equation is displayed to the screen.

Listing 3.40: Setting two variables and displaying the result of the equation

1 echo "$((myvar = 7 + $((vartwo = 4+4))))"
2 #15 is displayed as a result
3 echo "myvar=$myvar and vartwo=$vartwo"
4 #Displays: "myvar=15 and vartwo=8" on the screen

Chapter 4

Editors

Contents
4.1 Introduction . 50
4.2 Graphical Editors . 50

4.2.1 gedit . 50
4.3 Shell Editors . 51

4.3.1 nano . 52
4.3.2 vi . 53

4.1. Introduction 50

4.1 Introduction

Most of the files on a Linux system is text files. A text file is a file that can be opened,
read and modified by a user in a easy to understand way. For instance a XML file
can be seen as a text file, for it is human readable without binary characters. Most
HPC applications make use of a basic text file as a input file and perhaps a few
database files that should not be modified with a normal text editor.
Because users normally access a Linux system from a remote host and especially
using a shell to execute commands, this chapter will focus more on the use of text
editors from the shell and not graphical editors. One graphical editor is shown in
this chapter for users that struggle to get to grips with an advanced editor such as
vi. There is no shame in preferring a certain editor above an other, it is up to the
user to decide which editor he/she prefers.
That said, this chapter will focus more on the vi editor than on the others because
vi has a lot of different “shortcuts” to perform a number of functions that may save
the user a lot of time.

4.2 Graphical Editors

Linux has a number of graphical text editors that can be used to edit files. The
author decided to include only one of them because the functionality of the chosen
editor sufficed the requirements for the workshop. However, there is a lot of other
and better editors available for free use.
To make use of the graphical editor from a Windows machine, the user first have
to connect to the Linux machine with X Forwarding enabled. Chapter 1 described
this method in Section 1.2.1.1 on page 4 and Section 1.2.2 on page 7. In short;
Xming must be started
A PuTTY session with X11 Forwarding must be opened.

4.2.1 gedit

The graphical interface editor chosen for this document is called gedit. Figure 4.1
shows the PuTTY screen in the background with the command that was called
(gedit /etc/profile) to open the gedit interface. The gedit interface is shown in
front of the PuTTY screen.

It could be useful to open two PuTTY sessions, one to open the editor and
another to execute other commands etc.

51 Chapter 4. Editors

Figure 4.1: gedit - Graphical Text File Editor

4.3 Shell Editors

Linux has a vast number of editors that can be used from the shell. The most
popular shell editors are: vi and nano. These two editors should be installed by
default but it is possible that they are missing from the system. If the editor that a

4.3. Shell Editors 52

user prefers to use is not installed on the system, the systems administrator should
install it on the system.

4.3.1 nano

Nano is ANOther editor, an enhanced free Pico clone developed by Chris Allegretta
et al.
Nano is a basic text editor that is used to modify human readable (text) files. Unlike
vi, nano usually has to be manually installed onto the system. When opening a
file with nano, a list of commands is provided at the bottom of the nano editor
screen. For instance the command option to exit nano is Ctrl+x. Figure 4.2 shows
the editor interface of nano.

Figure 4.2: nano - Text File Editor

53 Chapter 4. Editors

4.3.2 vi

vi - a programmers text editor. The original code for vi was written by Bill Joy in
1976.
As described earlier in this chapter, vi is a powerful and advanced text editor. vi
has six basic modes while using it, but this text focuses on only two. The first
mode, and the mode that a file is opened in when opening vi, is the normal mode.
The normal mode is used to execute vi specific commands. The second mode is
the insert mode. The insert mode, as the name implies, is used to insert or edit the
file. While a user is in the insert mode, the user can browse up or down using the
arrow keys or the Page Up and Page Down options. Figure 4.3 shows the same file
opened by the two other editors. The first thing that the user may notice is that
vi has syntax highlighting enabled. Syntax highlighting is very useful while writing
scripts. Other editors also support syntax highlighting if the file is detected as a
specific type by the editor.

Figure 4.3: vi - Text File Editor

4.3. Shell Editors 54

4.3.2.1 Using vi

Most of the time a user will want to be in either normal mode to execute some
commands or in insert mode to edit a file. If the user is in insert mode, the word
“INSERT“ will be displayed on the bottom left hand corner. To go into insert mode
while in normal mode, press the letter i. Optionally press insert. If the user presses
insert for a second time, the word ”INSERT“ in the left hand corner will change to
”REPLACE“ and any text typed, will override the previous text.

The return to normal mode, press Escape. The following table shows some
useful commands that can be executed while in normal mode.

vi Commands
:w Write/Save the modifications to the disk
:q Quit/Exit vi
:w! Force a write to disk
:q! Force to quit, without saving changes
:x Save changes and quit
:x! Force Save changes and quit
i Insert Text (IM)
a Insert Text, at the beginning of the line (IM)
A Insert Text, at the end of the line (IM)
r Replace/Override Text (IM)
o Add a line below the current line (IM)
O Add a line above the current line (IM)
yy Yank a line (copy)
y4y Yank 4 lines (copy)
p Paste a yanked or deleted line
dd Delete the current line
d7d Delete 7 lines from current position
D Delete text from current position, up to the end of the line
C Delete text from current position, up to the end of the line (IM)
. (period) Repeat the last command
Alt+u Undo the previous command
Ctrl+g Show file status on “status bar”
G Go to end of the file
:43 Go to line 43
/ Search for text in the file
n Search for next instance of search result
N Search for previous instance of search result
:e! Undo all changes to file, and reopen last saved version
* (IM) = ... and enter Insert mode

55 Chapter 4. Editors

4.3.2.2 Searching for Strings

vi can search for a specific string (or regular expression) in the document. To
search for a string in the the document:

Press escape to enter normal mode
Press forward slash (/)
Type in the search string
Press enter
All the occurrences of the string will be highlighted and the cursor will move to on
of the occurrences
To search for the next occurrence in the document press n
To search for the previous occurrence in the document press N (Shift+n)
To clear the search string, search for something that will not be in the document
Eg. “asfrwqe”

4.3.2.3 Search and replacing strings

vi can also search and replace text in the open file. To search and replace all
instances of the word “done” to “achieved, the following can be executed:

Press escape to enter normal mode
Press colon (:)
A colon is displayed at the bottom of the screen
Type the following:
%s/done/achieved/g
Press enter

The “%/done/achieved/g” command executed above, tells vi to Seach for
the word done and to replace the word with achieved, Globally (throughout the
entire document).
If the user chooses to be prompted to replace the string for each occurrence, the
user can change the last character in the command from a “g” to a “c”:
%s/done/achieved/c
The above command, tells vi to search for the string and to replace it with the
provides string but the user should Confirm each action first.

Chapter 5

Regular Expressions

Contents
5.1 Overview . 58

5.1.1 Character sets . 58
5.1.2 Character classes . 58
5.1.3 Anchors . 59
5.1.4 Modifiers . 59
5.1.5 Examples . 59

5.1. Overview 58

5.1 Overview

Regular expressions are used to search for a string in text that conforms to a
specific pattern. For instance if a user is looking for the value 123-5678-9ABC,
the user can use the command grep "123-5678-9ABC" . What if the user only
knows that the pattern is ###-####-#XXX ? Now the user needs to search for
a specific pattern and not a specific value. The user can make use of a regular
expression to search for the pattern.
Regular expressions can be used in the shell or with some applications. In this
chapter the command grep will be used in combination with cat to show the use
of regular expressions.

A Regular Expression contains one or more of the following:
Character set or
class

Characters retaining their literal meaning

Anchors The position in the line of text that the RE is to match. Eg ^, and $
Modifiers Expand or narrow (modify) the range of text the RE is to match. Eg

asterisk, brackets, and backslash

5.1.1 Character sets

Some Character Sets:
[abc] Matches any occurrence of the letter “a”, “b” or “c”.
[s-w] Matches any character between “s” and “w” (s,t,u,v,w)
[A-Z0-9] Matches any character A to Z (capital letter) or 0 to 9
[A-Z0-9]* Matches multiple characters A to Z (capital letter) or 0 to 9
[^f-i] Matches a character other than f to i
\<the\> Matches the word “the” but not “them”, “there” or “other“
| Logical OR
& Logical AND

5.1.2 Character classes

59 Chapter 5. Regular Expressions

Some Character Classes:
Class Description Example
[:alnum:] Alphabetic and numeric values a-z A-Z 0-9
[:alpha:] Alphabetic values a-z A-Z
[:blank:] Space or tab character
[:cntrl:] Control characters
[:digit:] Digits (Numerals) 0-9
[:print:] Printable characters including space a-zA-Z0-9 ! @ #
[:lower:] Lower case characters a-z
[:upper:] Upper case characters A-Z

5.1.3 Anchors

Anchors:
^ Indicates the beginning of a line
$ Indicates the end of a line

5.1.4 Modifiers

Modifiers:
* Zero or more occurrences
? Zero or one occurrences
+ One or more occurrences
. One character

5.1.5 Examples

In these examples, a file was generated using the fortune command. The file was
saved as /etc/file.

Listing 5.1: Examples: Regular expressions

1

2 #Copy the file /etc/file to the current directory:
3 cp /etc/file .
4 #Search for the word "found"
5 grep "found" file
6 #Search for the word "the"
7 grep "the" file
8 #The previous search found wrong entries too such as:
9 # their,they,these,others etc.

10 #Seach only for the word "the"
11 grep "\<the\>" file

5.1. Overview 60

12 #Search for the word "The" and "the"
13 grep "\<[Tt]he\>" file
14

15 #Search for double characters "oo", or "ss"
16 grep "[o]\{2\}\|[s]\{2\}" file
17 #Search for numbers in the file
18 grep "[0-9]" file
19 #Search for words that are 3 characters long
20 grep "\<[A-Za-z]\{3}\>" file
21 #Search for words that are 9 or more characters long
22 grep "\<[A-Za-z]\{9,\}\>" file
23 #Search for a line that starts with an "A"
24 grep "^A" file
25 #Search for a line that ends with an "e"
26 grep "e$" file
27 #Search of a string XXXXXXXX-##
28 grep "[[:alnum:]]*-[0-9]\{2\}" file

Chapter 6

Shell Scripting

Contents
6.1 Overview . 62
6.2 Logical Testing . 64

6.2.1 If statement . 66
6.2.2 Case statement . 67

6.3 Loops . 67
6.3.1 For Loop . 67
6.3.2 While Loop . 68

6.4 Reading input from different sources 68
6.4.1 Reading values from shell environment variables 69
6.4.2 Working with substring parts of shell variables 70
6.4.3 Reading input from the user 71
6.4.4 Reading content from a file 72
6.4.5 Reading parameters and options from shell 73

6.5 Functions . 75
6.6 Trapping signals . 75

6.1. Overview 62

6.1 Overview

A shell script is a collection of commands contained in one single file. Shell scripts
can be used for various functions. Some scripts are just used to execute a few
commands and display something back to the user. Others are used to modify files,
extract text from files and write output to new files.

An other function of a shell script is to set the environmental for an application.
Essentially a shell script is the same Linux commands that can be executed in a
shell, just stored in a file. It is conventional to save the file with a “.sh” extension.
However, it is not necessary to save the file with a .sh extension.

As mentioned in Chapter 2 (Section 2.4 page 21), the PATH environmental
variable controls which directories will be searched when a command is executed.
One such directory usually includes the bin directory in the users’ home directory
($HOME/bin). Therefore if a script is created that will be executed from multiple
paths, the script can be copied to the user’s home directory.

The first line in the shell script usually starts with something like#!/bin/bash.
The #!... part is known as the shebang . The shebang, in this instance, tells the
kernel that a bash interpreter is used when the script is executed. It is important
to tell the kernel which interpreter to use by specifying the shebang, or else the
wrong interpreter can be called and the script may fail to execute correctly.

Lines in the script starting with (or text after) a hash (#) are comments and
are not executed by the shell (except for the shebang as mentioned above). It is
good measure to add comments and indentations in shell scripts to make it easier
to read.

After creating a shell script, the script needs to be made executable and
optionally copied into certain directory that is in the user’s PATH. To make a shell
script executable, the user can use the chmod command. The following command
will make the file called script.sh executable: chmod +x script.sh

After the script has been made executable, there are a few methods of executing
the script. If the script is located in a directory that is in the PATH, the script
can be executed by simply typing in the script’s name. The script can be executed
by using the source ScriptName command. The source command executes the
commands that are in the script, in the current environment. This means that the
script can set/modify/export variables and have those changes apply to the current
environment. A similar method that has the same effect as source, is to execute

63 Chapter 6. Shell Scripting

the script by typing in dot (.) followed by the path of the script. For instance .
/home/user/script.sh

Another option is to execute the script using the (bash) or sh command
followed by the script name/full path. By executing the script in this way, a
new shell session is opened and the exported variables are copied to that process.
After that process (the script) finishes, the current environment remains unchanged.

Listing 6.1 shows a basic shell script that only prints out a few of the special
environmental variables specific to a shell script.

6.2. Logical Testing 64

Listing 6.1: Basic Shell Script (script.sh)

1 #!/bin/bash
2 echo "This script was called as: $0"
3 echo "The number of parameters sent to this script was: $#"
4 echo "This script was called with the parameters: $@"
5 echo "The first parameter is : $1"
6 echo "The second parameter is : $2"
7 echo "The process id of this script is: $$"
8 echo "This script was called from: $(pwd)"
9 echo "The name of this script without the path is: $(basename $0)"

10 echo "The path of this script is: $(dirname $0)"
11 exit 0

Listing 6.2: Executing the Basic Shell Script

1 ./script.sh One Two
2 This script was called as: ./script.sh
3 The number of parameters sent to this script was: 2
4 This script was called with the parameters: One Two
5 The first parameter is : One
6 The second parameter is : Two
7 The process id of this script is: 21568
8 This script was called from: /tmp
9 The name of this script without the path is: script.sh

10 The path of this script is: .

6.2 Logical Testing

Logical testing is the testing of a value and determining (depending on the value)
what the next step should be. In this section, the if-, test- and case-statements will
be discussed.
There are different tests that can be performed and different methods that should
be used to test different types of values. For instance the operand used to test a
number differs from the operand used to test a string.
For more information execute info test.

65 Chapter 6. Shell Scripting

6.2.0.1 Basic Testing

A basic test can be performed in the shell using square brackets “[]”. To illustrate,
Listing 6.3 shows a test for a directory. If the directory exists, a message is displayed.
If the directory does not exist, it is created and a message is displayed. Note, the
command in Listing 6.3 can be written in one line by removing the two backslashes
(“\”) and concatenating the lines.

Listing 6.3: Basic Logical Test

1 [-d /tmp/$USER/] \
&& echo "The directory already exists" \
|| echo "Creating the directory"; mkdir -p /tmp/$USER };

6.2.0.2 Testing Numbers

Operant
-eq Equal
-ne Not Equal
-lt Less than
-le Less than or equal
-gt Greater than
-ge Greater than or equal

Example:
[$(date +%k) -lt 12] && echo "Good morning" || echo "Good afternoon"

6.2.0.3 Testing Text

Operant
== Equal
= Equal
!= Not Equal
-z Zero length text (Empty)
-n Not Zero length text

6.2. Logical Testing 66

6.2.0.4 Testing Files and directories

Operant
-e Exists
-r Readable
-w Writeable
-s Non Zero sized file (Not Empty)
-d Type is directory
-f Type is file
-L Type is a symbolic link

6.2.1 If statement

The if-statement is used to test a certain condition that may have only one of two
outcomes (yes/no). For instance Listing 6.4 shows two variables that determines an
action. In this example, if the user has the day off (DAY_OFF=yes) and if it is not
raining (RAINING=no) then the user can go play golf (CAN_PLAY_GOLF=yes).

Listing 6.4: Basic Logical Test

1 #!/bin/bash
2 RAINING=no
3 DAY_OFF=yes
4

5 if ["$RAINING" = "no" -a "$DAY_OFF" = "yes"]; then
6 CAN_PLAY_GOLF=yes
7 else
8 CAN_PLAY_GOLF=no
9 fi

10 echo "Can you play golf today: $CAN_PLAY_GOLF"

On Line 5, notice the space after the “[” and before the “]”
On Line 5, the “-a” option is interpreted as AND
Line 6 will only be executed if both conditions are satisfied
Line 8 will be executed if one or both conditions aren’t satisfied

67 Chapter 6. Shell Scripting

6.2.2 Case statement

A case statement is used when a variable can have multiple values, instead of writing
an if-statement for each possibility. For instance assume a user has a variable called
SPORT that is tested against multiple predefined values such as soccer, rugby, golf,
tennis or squash. For each of the predefined values, a different action should be
performed. Listing 6.5 shows an example of a case statement.

Listing 6.5: Basic Logical Test

1 #!/bin/bash
2 SPORT=tennis
3 case "$SPORT" in
4 "golf")
5 echo "You better clean your golf clubs first"
6 ;;
7 "soccer")
8 echo "It’s too late for Bafana, maybe not for you"
9 ;;

10 "rugby")
11 echo "Better bulk up first"
12 ;;
13 "tennis" | "squash")
14 echo "First look for your racket"
15 ;;
16 *)
17 echo "You did not specify what you want to do"
18 echo "I guess you’re just going to watch TV then"
19 esac

6.3 Loops

Loops are used to execute a set of commands for a certain number of iterations.
Two types of loops will be discussed in this section.

6.3.1 For Loop

A for loop is used to execute a subset of commands for each iteration in a list of
iterations. The number of iterations can be determined from the number of items
in a list or from a sequence. Listing 6.6 shows a for loop for a sequence ranging
from 5 to 400 with a iteration of 3.

Listing 6.6: For Loop

1 #!/bin/bash
2 ITERATION=3
3 START=5
4 END=400
5

6.4. Reading input from different sources 68

6 for i in $(seq $START $ITERATION $END); do
7 ((iCount += 1))
8 echo "Iteration Number $iCount for the value $i"
9 done

Listing 6.7: For Loop Output

1 Iteration Number 1 for the value 5
2 Iteration Number 2 for the value 8
3 Iteration Number 3 for the value 11
4 Iteration Number 4 for the value 14
5 ...
6 Iteration Number 132 for the value 398

6.3.2 While Loop

A while loop is used to execute a subset off commands for each iteration for un-
known number of iterations or until the logical test becomes false. One should
take extra precaution not to run into an instance where an endless loop occurs.
The following script shows two while loops. The first one counts from zero to 29
and displays the values on the screen. The second creates an endless loop. If an
extra terminal is opened while the endless loop runs, one will note (using top or
htop) that the while process uses the entire CPU time on the thread/core that it
is running.

Listing 6.8: While Loop

1 #!/bin/bash
2 i=0
3 MAX=30
4 while [$i -lt $MAX]; do
5 echo "Value: $i"
6 ((i++))
7 done
8 echo "The following is an endless loop." echo "Press Cntrl+c to cancel

" while[1-lt2];do
9 # Perform no action but use : as a place-holder

10 :
11 done

6.4 Reading input from different sources

The following sections show how input can be read by shell scripts from different
sources such as environment variables, user input and files.

69 Chapter 6. Shell Scripting

6.4.1 Reading values from shell environment variables

If a variable is defined and exported using either the declare or the export
commands, that variable is copied and available inside the shell script. To access
the value, one can simply access the variable as you would in the bash terminal.
For instance, the variable $USER is usually exported and available in a shell script.
Listing 6.9 shows how an exported variable can be accessed:

Listing 6.9: Accessing a variable inside a script

1 #!/bin/bash
2 #Set the value of MyName equal to the value that $USER holds
3 MyName=$USER
4 echo "My user name is $MyName"

6.4.1.1 Reading/Testing values from possibly empty or not defined shell
variables

If a shell-script tries to access the value of a variable that does not exist or is
not exported, no error is given. Instead a NULL value is returned/assigned to
a variable. This is normal behaviour for a bash script and the script continues
without problems. Sometimes, it is required to set a default value when a variable
has not been set before. The following script shows how this can be accomplished.
The first method is to test if the variable has a value and then set it, using an
if -statement. This method will work but there is a better way. The better solution
would be to make use of a :- environment variable reference.

Listing 6.10: Accessing an empty/unset variable and setting a default value

1 #!/bin/bash
2

3 #If $Name is defined, set MyName=$Name or else MyName=Albert...
4 if [-s "$Name"]; then
5 MyName="$Name"
6 else
7 MyName="Albert van Eck"
8 fi
9

10 #The above statements can be rewritten as:
11 MyName=${Name:-Albert van Eck}
12

13 echo "My name is: $MyName"

If a variable is not set, it is sometimes necessary to terminate the script without
continuing. The example below shows yet again a bulky method and then the more
elegant :? method. The following script tests to see if a variable is set and if not;
the script will return an error and exit to the shell.

6.4. Reading input from different sources 70

Listing 6.11: Terminate script if variable is not set

1 #!/bin/bash
2

3 #If the length of $Name is zero; exit the script:
4 if [-z "$Name"]; then
5 echo "The value of Name is not set, we will not continue"
6 exit 1
7 else
8 MyName="$Name"
9 fi

10

11 #The better/shorter method:
12 MyName=${Name:?"The value of Name is not set, we will not continue"
13

14 #If there was an error above, the next will not be executed
15 echo $MyName

The next example shows how to test if a variable holds a value. If the variable
is set, then set another variable (Message in this case) to a specific value. If the
variable is not defined at all, set the value to an empty value.

Listing 6.12: Define a variable, only if another variable has been set

1 #!/bin/bash
2

3 #The long if-statement method:
4 if [-z "$Name"]; then
5 Message="Welcome to the system"
6 else
7 Message=
8 fi
9

10 #The shorter version:
11 Message=${Name:+"Welcome to the system"}
12

13 echo "$Message"

6.4.2 Working with substring parts of shell variables

The following script shows how to use some text manipulation methods when work-
ing with environment variables.

Listing 6.13: Working with sub-strings in variables

1 #!/bin/bash
2 Fruit="grapefruit apples oranges peaches kiwi grapes"
3 echo "The length of the string \$Fruit = ’${#Fruit}’"
4 echo "Substring of chars 0 to 5 is ’${Fruit:0:5}’"
5 echo "Substring starting at 34, for 4 chars long is: ’${Fruit:34:4}’"
6 echo "Substring of characters 34 to the end is ’${Fruit:34}’"

71 Chapter 6. Shell Scripting

7 echo
8 #Now we cast the string into a new array:
9 FruitArray=($Fruit)

10 echo "The number of items in the array is: ’${#FruitArray[@]}’"
11 echo "The first item in the array is: ’${FruitArray[0]}’"
12 echo
13 ScriptName=$(basename $0)
14 ScriptNameOnly=${ScriptName%.*}
15 ScriptExtension=${ScriptName#$ScriptNameOnly}
16 echo "The full script name is: $ScriptName"
17 echo "The name without the extension is: $ScriptNameOnly"
18 echo "The script’s extension is: $ScriptExtension"

The above script will produce the following, when executed:

Listing 6.14: Output of listing 6.13

1 ./example.sh
2 The length of the string $Fruit = ’45’
3 Substring of chars 0 to 5 is ’grape’
4 Substring starting at 34, for 4 chars long is: ’kiwi’
5 Substring of characters 34 to the end is ’kiwi grapes’
6

7 The number of items in the array is: ’6’
8 The first item in the array is: ’grapefruit’
9

10 The full script name is: example.sh
11 The name without the extension is: example
12 The script’s extension is: .sh

6.4.3 Reading input from the user

A script/shell can request input from the user. To read input from the user and
save the input to a variable, the read command can be used. Listing 6.15 reads the
input that the user provides. Note that the -s option is used to hide the input from
the screen output. Thus, the user will type in some text and won’t see the output
on the screen. This is useful when a user is prompted for a password.

Listing 6.15: Reading input from the user

1 USERNAME=
2 PASSWORD=
3 echo -n "Username : "
4 read USERNAME
5 echo -n "Password : "
6 read -s PASSWORD
7

8 PASSWORDHASH=$(echo $PASSWORD|sed "s|[[:print:]]|x|g")
9 echo

10 echo "Username: $USERNAME"
11 echo "Password: $PASSWORDHASH"

6.4. Reading input from different sources 72

It is important to remember that the user input is case sensitive. That implies that
anything a user types, has to be converted into either upper-case or lower-case before
testing the user input. For instance testing a user’s input in a case statement; you
will have to test the value "dog" against "dog", "Dog", "DOg", "DOG", "DoG"
etc. To make testing easier; one can for instance declare the variable as lower-case
by executing the (declare -l VariableName) command or one can convert the output
to upper/lower case after the fact by piping the result to the transform (tr [A-Z][a-
z]) command. The following example shows how user input can be tested with an
if-statement or a case-statement ignoring the case-sensitivity:

Listing 6.16: Reading and then testing user input

1 #!/bin/bash
2 declare -l hasPet
3 echo "Please answer the following question yes or no:"
4 echo -n "Do you have a pet:"
5 read hasPet
6 echo
7 #Testing for y and yes... no need to test for Yes/YES/yeS etc.
8 if ["$hasPet" == "y" -o "$hasPet" == "yes"]; then
9 echo -n "What is your pet’s name: "

10 read PetName
11 case "$(echo $PetName | tr ’A-Z’ ’a-z’)" in
12 "fluffy" | "snoopy" | "roger" | "spike")
13 echo "I also have a pet called $PetName."
14 ;;
15 *)
16 echo "$PetName is such a nice name!"
17 ;;
18 esac
19 else
20 echo "That is too bad."
21 fi

6.4.4 Reading content from a file

There are multiple methods to read a file from disk and process it in a shell script.
In most instances, a file is either read word for word or line by line. Words are
separated by white spaces (space, tab, new line). When a file is read word for word,
all the new line characters are changed to spaces. This means that each line will be
broken up into words and each word is returned to the script. Listing 6.17 shows
how a file is processed word for word:

Listing 6.17: Reading a file word for word using a for loop

1 #!/bin/bash
2 for word in $(cat names.txt); do
3 echo "$word"
4 done

73 Chapter 6. Shell Scripting

In the next example, a file is read and the content is processed, line by line. This
example is especially useful if a user wants to read a file line for line and perform
some tests or other actions on the whole line.

Listing 6.18: Reading a file line for line using a while loop

1 #!/bin/bash
2 FILE=/tmp/${USER}_sleeptest
3 [-f $FILE] || { echo "The file does not exist."; exit 1; }
4 while read LINE; do
5 echo $LINE |tr "a-z" "A-Z"
6 done < $FILE
7 exit 0

6.4.5 Reading parameters and options from shell

A shell script can access the parameters sent to the script by simply referring to the
number of the parameter sent to the script. The first parameter sent to the script
is accessible inside the script by the variable $1, the second option is accessible as
$2 and so on, up to $9. After the ninth option; the variables must be accessed by
enclosing the number inside curly brackets: such as $10.

Listing 6.19: Accessing parameters sent to a script

1 #!/bin/bash
2 echo "This script’s name is: $0"
3 echo "There were $# parameters parsed to this script"
4 echo "Parameter 1 was: ’$1’"
5 echo "All the parameters are: ’$@’"

When a command is executed in the shell, the user is also able to specify different
parameters. For example, the command tail -n 2 /etc/hosts has the parameter
"-n” with the value "2”. If a user wants to write a shell script that reads parameters
and values from the shell, the values must be read by the script using the getops
command.

Listing 6.20: Reading input from the user

1 #!/bin/bash
2 USAGESTRING="usage: $(basename $0) -t TIME -n NODES -m MEM"
3

4 while getopts "t:m:n:h" OPT; do
5 case $OPT in
6 ’t’)
7 TIME=$OPTARG;;
8 ’n’)
9 NSCM=$OPTARG;;

10 ’m’)
11 MEM=$OPTARG;;
12 ’?’|’h’)

6.4. Reading input from different sources 74

13 echo $USAGESTRING
14 exit 1;;
15 esac
16 done
17

18 echo "You chose to execute this command using the following:"
19 echo "Nodes : $NSCM"
20 echo "Memmory : $MEM"
21 echo "Time : $TIME"

75 Chapter 6. Shell Scripting

6.5 Functions

If the same set of commands will be executed inside a shell script, it is better to put
the set of commands in a function. A function is only available in the bash shell
and not in the c-shell. A function can read a number of parameters and can return
values. A funtion can also return a code to indicate that the function completed
successful of not.

Listing 6.21: A basic Function to do divisions

1 #!/bin/bash
2 function div ()
3 {
4 NUMBER=$1
5 DIVIDER=$2
6

7 if [$DIVIDER -eq 0]; then
8 echo "ERROR"
9 return 1

10 fi
11

12 echo "$((NUMBER / DIVIDER))"
13 return 0
14 }
15

16 echo "12 / 3 = $(div 12 3)"
17 echo "12 / 0 = $(div 12 0)"

6.6 Trapping signals

When an application is closed, a signal is sent to the process. Different signals are
sent to applications to initiate different actions. This is helpful especially if a action
should be performed just before the application is terminated. For instance, an
application can be closed before the application ran in full. Some applications may
create files that needs to be removed when the application is closed, or needs to
move data from one location before the application terminates. An example could
be if an application uses data in a temporary directory and the user terminates the
application, the application should first try and move the temporary files to the
location where it should reside.

The following table shows some of the more common signals that an applica-
tion will receive.
A full list can be seen in the man pages: man 7 signal

6.6. Trapping signals 76

Standard signals
Name Value Description
SIGHUP 1 Death of controlling process
SIGINT 2 Keyboard interruption
SIGKILL 9 Kill signal - Can’t be trapped
SIGTERM 15 Termination

Listing 6.22: Trapping signals

1 #!/bin/bash
2 PID_FILE=/tmp/${USER}_traptest
3 echo $$ > $PID_FILE
4 declare -i i=1
5

6 function ShowInterupt()
7 {
8 echo
9 echo "Caught signal $1"

10 date
11 kill -SIGTERM $$
12 }
13

14 function CloseApplication()
15 {
16 [-e $PID_FILE] && { echo "Removing PID File $PID_FILE"; rm -

f $PID_FILE; }
17 echo "The application will terminate in 2 sec"
18 sleep 2
19 echo "Premature Termination"
20 exit 1
21 }
22

23 trap "ShowInterupt SIGINT" SIGINT
24 trap "CloseApplication" SIGTERM
25

26 echo "The PID is $$"
27 echo "This application will count until iteration 5 or Ctrl-C is

pressed."
28 echo "Each iteration is 10 secs long"
29

30 while [$i -lt 5]; do
31 echo "Iteration $i"
32 sleep 10
33 ((i++))
34 done
35 echo "Iteration $i"
36 echo "Normal Termination"
37 exit 0

In Listing 6.22, the method to trap signals is ilistrated.

77 Chapter 6. Shell Scripting

On Line 14, the function “CloseApplication” is declared.
On Line 23, a trap will capture the SIGINT (Cntrl+c) event and execute the
CloseApplication function.
When this script is executed and Cntrl+c is pressed, the return code from the com-
mand echo $? will return 1.
If the script is left to count upto iteration 5, the return code will be 0.

Chapter 7

High Performance Computing

Contents
7.1 Overview . 80
7.2 Creating a submit File . 80
7.3 Submitting a job . 82
7.4 Monitor the status of a job 83
7.5 Cancelling a job . 83
7.6 Getting job output . 84
7.7 Viewing Queues . 85
7.8 Viewing nodes . 85

7.1. Overview 80

7.1 Overview

This chapter describes the different commands and use of a generic HPC. This
chapter is based on a batch system called Torque. Torque is a queuing system that
is based on PBS (Portable Batch System). In a HPC, two software components are
very important. The first component is called the queuing system. In the the case
of Torque, this system is basically PBS. It is important for the user to know which
queuing system is used because the user needs to create descriptive instructions for
the specific queuing system.
The second software component is the scheduler. The scheduler is responsible to
start the job on a node and to stop the job when the job is complete. Torque makes
use of the scheduler called Maui. Maui is based on the Moab scheduler.
More information regarding Torque (PBS/Maui) can be found on the Clusterre-
sources website:
http://www.clusterresources.com/

The following work flow is the generic work flow that a user will use to sub-
mit a job on a HPC:
01. Log into a HPC Linux server
02. Authenticate to the server
03. Create a sub directory for input files
04. Create a submit file
05. Create/Upload input file(s)
06. Create/Upload an execution script
07. Upload Applications (If not already installed on the HPC)
08. Submit the Job
09. Check job status of the job
10. Get output when done
11. Download output to own computer
12. View/Analyze Output

7.2 Creating a submit File

In the Overview on page 80, 12 steps are mentioned that a HPC user normally
follows to submit a job etc. Steps 01 to 03 are straight forward and discussed in
previous chapters. This section shows a submit file and describes the different
aspects thereof.
When a user wants to execute a job on a HPC, the user needs to describe the
resources that the job requires to execute. These resources are listed in a file
referred to as a submit script. The name submit script implies that the file is a
shell script that is used to submit a job.
The submit script is used to perform the following actions:

http://www.clusterresources.com/

81 Chapter 7. High Performance Computing

* Define which resources are required
* Define and prepare input/output files
* Set the environment for the job
* Execute the job
* Copies results back
* Clean up temporary files (Optional)

Listing 7.1: A simple submit script (TestJob.pbs)

1 #!/bin/bash
2 #PBS -N Hostname_Test
3 #PBS -l nodes=1:ppn=1:prod
4 #PBS -l walltime=00:10:00
5 #PBS -M vanecka
6 #PBS -S /bin/bash
7 #PBS -m abe
8 #PBS -o general.out
9 #PBS -e general.err

10

11 ######################################
12 # Set environment #
13 ######################################
14 rshcmd="/usr/bin/ssh -n"
15 export np=1
16 export SCRATCH=/scratch/$USER/general
17 ######################################
18

19 #Create the scratch paths on all executing nodes
20 MACHINES=‘cat nodelist‘
21 for machine in $MACHINES; do
22 $rshcmd $machine "mkdir -p $SCRATCH"
23 done
24

25 ######################################
26 # Physical job that will run #
27 ######################################
28 echo "Execution Started: $(date)"
29 hostname -f
30 sleep 20
31 cd /root
32 echo "Execution Ended: $(date)"
33 ######################################
34

35 # Cleanup the Scratch
36 for machine in $MACHINES; do
37 $rshcmd $machine "/bin/rm -rf $SCRATCH"
38 done
39

40 exit 0

In Listing 7.1, the following settings and commands are set:

7.3. Submitting a job 82

Line 2, define the name of the job
Line 3, requests 1 node with 1 CPU core available and that has the production
setting set
Line 4, requests that job will run for a maximum of 10 minutes
Line 5, send email to user “vanecka”
Line 6, set the shell to bash
Line 7, send email when job aborts, begins or exits
Line 8, save the output to a file
Line 9, save the errors to a file
The example in Listing 7.1 basically only executes the command hostname -f ,
sleeps for 20 seconds and then tries (and fails) to change to the /root directory.

7.3 Submitting a job

Section 7.2 showed how a submit script can be created. If a submit script is created,
the next step is to submit the job.

Listing 7.2: Submitting a job

1 qsub TestJob.pbs
2 37230.man.int.hpc.ufs.ac.za

83 Chapter 7. High Performance Computing

7.4 Monitor the status of a job

When a job is submitted, the status of the job can be monitored. In Listing 7.2, a
job identifier was returned. This job identifier can be used to monitor the status of
the job. One command that can be used to check the status of a job is the qstat
command. The qstat command can be used with different options. In Listing 7.3,
a short description of the status of the job is requested.

Listing 7.3: Job status - summary

1 qstat -a 37230.man.int.hpc.ufs.ac.za
2 Req’d Elap
3 Job ID Username Queue Jobname SessID NDS TSK Time S Time
4 ---------- -------- ----- --------- ------ ---- --- ----- - -----
5 37230.man. testuser short Hostname_T 26207 1 1 00:10 R --

Listing 7.4: All jobs’ statistics

1 qstat -a
2 Req’d Elap
3 Job ID Username Queue Jobname SessID NDS TSK Time S Time
4 ----------- -------- ------ ------- ------ ---- --- ----- - -----
5 23860.man. vansoele long aic_**** 1785 1 48 170:0 R 106:1
6 25271.man. barnarde veryl FeS_**** 17422 1 48 1000: R 345:4
7 25766.man. engelbre veryl JIr1**** 30881 1 48 1000: R 319:0
8 27051.man. freitagr long Mntf**** 21133 1 8 200:0 R 24:20
9 27053.man. freitagr long Mntf**** 12376 1 8 200:0 R 11:33

10 27054.man. freitagr long Cotf**** 23226 1 8 200:0 R 08:14
11 27055.man. freitagr long Cotf**** 7646 1 8 200:0 R 04:18
12 27056.man. freitagr long Cotf**** -- 1 8 200:0 Q --

If the job is not running, the command showstart can be used. The showstart
command shows an estimated time when the job can start execution. This estima-
tion is calculated by checking all the running jobs and checking when the required
resources will become available.

Listing 7.5: Job estimated start time

1 showstart 27056
2 job 27056 requires 8 procs for 8:08:00:00
3 Earliest start in 00:00:00 on Wed Jul 13 05:33:06
4 Earliest completion in 8:08:00:00 on Thu Jul 21 13:33:06
5 Best Partition: DEFAULT

7.5 Cancelling a job

A HPC job can be canceled by using the qdel command. A user can not delete an
other user’s jobs. A user can also delete a sequence of jobs.

7.6. Getting job output 84

Listing 7.6: Deleting jobs

1 # For instance, say a user wants to delete jobs 1234 1236 and 1288
2 cmdqdel 1234 1236 1288
3 # Now say the user wants to delete jobs 1234 to 1300:
4 qdel {1234..1300}

7.6 Getting job output

When a job finished, the user can check the output of the job. By default most HPCs
will share the home directories between nodes. By sharing the home directories
between nodes, it is not necessary to retrieve job output after the job is done. The
HPC will take car of the retrieval task itself. However, the user would like to check
the output. By default the output will be saved in the directory where the job
executed. Listing 7.7 shows the output of the job that was submitted in Listing
7.2 and Listing 7.8 shows the error that was generated by the job. The error was
expected because the job tried to enter the /root directory and a normal user is not
able to cd to /root.

Listing 7.7: Expected Output (general.out)

1 Execution Started: Wed Jul 13 04:54:49 SAST 2011
2 node0317.int.hpc.ufs.ac.za
3 Execution Ended: Wed Jul 13 04:55:09 SAST 2011

Listing 7.8: Expected Error (general.err)

1 /var/spool/pbs/mom_priv/jobs/37230.man.int.hpc.ufs.ac.za.SC: line 31:
cd: /root: Permission denied

85 Chapter 7. High Performance Computing

7.7 Viewing Queues

A HPC may have different queues for different jobs, resources, users or walltime
settings. A user needs to view the settings of the different queues to know to which
queue to submit a job. The qstat command is used to view the resources and
specifications of a queue. Listing 7.9 shows a list of queues with the statistics of
running jobs etc. for each queue. This information could be helpful to see which
queues are over saturated etc.

Listing 7.9: Queue statistics

1 qstat -Q
2 Queue Max Tot Ena Str Que Run Hld Wat Trn Ext T
3 -------- --- --- --- --- --- --- --- --- --- --- -
4 short 0 288 yes yes 0 288 2 0 0 0 E
5 express 0 0 yes yes 0 0 0 0 0 0 E
6 long 0 53 yes yes 42 11 0 0 0 0 E
7 gilda 0 0 yes yes 0 0 0 0 0 0 E
8 medium 0 0 yes yes 0 0 0 0 0 0 E
9 smp8 0 17 yes yes 11 6 0 0 0 0 E

10 sagrid 0 10 yes yes 0 10 0 0 0 0 E
11 parallel 0 10 yes yes 0 10 0 0 0 0 E
12 verylong 0 2 yes yes 0 2 0 0 0 0 E
13 add 0 0 yes yes 0 0 0 0 0 0 R

Listing 7.10: Queue Walltime Limits

1 qstat -q
2

3 Queue Memory CPU Time Walltime Node Run Que Lm State
4 ---------------- ------ -------- -------- ---- --- --- -- -----
5 short -- -- 24:00:00 1 384 0 -- E R
6 express -- -- 02:00:00 1 0 0 -- E R
7 long -- -- 300:00:0 1 11 31 -- E R
8 gilda -- 48:00:00 72:00:00 -- 0 0 -- E R
9 medium -- -- 150:00:0 1 0 0 -- E R

10 smp8 -- -- 1000:00: -- 0 0 -- E R
11 sagrid -- -- 72:00:00 -- 0 0 -- E R
12 parallel -- -- -- -- 4 0 -- E R
13 verylong -- -- 1000:00: 1 1 0 -- E R
14 add -- -- -- -- 0 0 -- E R
15 ----- -----
16 400 31

7.8 Viewing nodes

It is useful to check the properties of a node to make sure that the requested resources
will be satisfied by a node. To check the status of all nodes (or just one) the command
(pbsnodes) is used.

7.8. Viewing nodes 86

Listing 7.11: Viewing a node’s properties

1 pbsnodes
2 ...
3 node0317.int.hpc.ufs.ac.za
4 state = job-exclusive,busy
5 np = 48
6 properties = prod,grid,g03,gaussian,gate,yasara,espresso,vasp,
7 gamess_us,crystal,beam,lcgpro,gromacs,blast,express,

amd
8 ntype = cluster
9 jobs = 0/36644.man.int.hpc.ufs.ac.za, 1/36622.man.int.hpc.ufs.ac.

za,
10 2/36622.man.int.hpc.ufs.ac.za, 3/36645.man.int.hpc.ufs.ac.

za,
11
12 46/36949.man.int.hpc.ufs.ac.za, 47/36659.man.int.hpc.ufs.ac

.za
13 status = rectime=1310401687,varattr=,jobs=36644.man.int.hpc.ufs.

ac.za
14 36645.man.int.hpc.ufs.ac.za 36646.man.int.hpc.ufs.ac.za
15 36647.man.int.hpc.ufs.ac.za 36648.man.int.hpc.ufs.ac.za
16 uname=Linux node0317.hpc.ufs.ac.za 2.6.18-194.26.1.el5
17 #1 SMP Tue Nov 9 12:46:16 EST 2010 x86_64,opsys=linux
18 mom_service_port = 15002
19 mom_manager_port = 15003
20 gpus = 0

An other script, written by the author, gives a bird’s eye view of the resources
available on a Torque HPC. The script nodes-free can be executed and the results
are shown in Listing 7.12.

Listing 7.12: Available cores per node

1 nodes-free
2

3 Node #Cores Free/#Cores Properties
4

5 node0008 5/ 8
6 node0301 16/48
7 node0302 32/48
8 node0305 22/48
9 node0306 29/48

10 node0308 24/48
11 node0312 8/48
12 node0317 8/48
13

14 Total Nodes Free: 8
15 Total Cores Free: 144

Figure 7.1, shows an overall performance graphs collected from a website for the
whole HPC.

87 Chapter 7. High Performance Computing

Figure 7.1: HPC Performance Graphs

Bibliography

[Apache 2019] Apache. Apache Guacamole. https://guacamole.apache.org,
2019. 13

[Geeknet 2011] Geeknet. Xming X Server for Windows. http://sourceforge.
net/projects/xming, 2011. 7

[Prikryl 2011] Martin Prikryl. WinSCP :: Introducing WinSCP. http://
winscp.net/eng/docs/introduction, 2011. 8

[Tatham 2010] Simon Tatham. PuTTY - A free SSH and telnet client for Windows.
http://www.putty.org, 2010. 4

[Wikipedia 2011] Wikipedia. Bash (Unix Shell). http://en.wikipedia.org/
wiki/Bash_(Unix_shell), 2011. 21

https://guacamole.apache.org
http://sourceforge.net/projects/xming
http://sourceforge.net/projects/xming
http://winscp.net/eng/docs/introduction
http://winscp.net/eng/docs/introduction
http://www.putty.org
http://en.wikipedia.org/wiki/Bash_(Unix_shell)
http://en.wikipedia.org/wiki/Bash_(Unix_shell)

List of Figures

1.1 A console connection . 2
1.2 Default PuTTY login screen . 4
1.3 PuTTY - Enabling X11 Forwarding 5
1.4 PuTTY - Enabling Mouse Copy and Paste 6
1.5 PuTTY - Saving default session profile 7
1.6 Xming - X Forwarded graphics . 8
1.7 WinSCP - Login Screen . 9
1.8 WinSCP - File Manager Screen . 10
1.9 Guacamole - Graphical Web interface to the HPC 14

4.1 gedit - Graphical Text File Editor . 51
4.2 nano - Text File Editor . 52
4.3 vi - Text File Editor . 53

7.1 HPC Performance Graphs . 87

Index

Bash
Commands, see command, 30–47

Case Sensitivity, 18
command

((, 45–47
alias, 26, 26, 28, 30
Arithmetic, 45–47
auto complete, 24
basename, 64, 71, 73
bg, 26
case, 67, 72, 73
cat, 39, 40, 58, 59, 72
cd, 31, 32, 36, 37, 84
chmod, 20, 62
clear, 28, 31
cp, 38, 59
cut, 43
date, 76, 81
declare, 46, 72, 76
df, 34
dirname, 64
echo, 21, 31, 32, 41, 64, 71, 74, 76
examples, 34–47
exit, 64, 73, 76, 81
export, 21, 23, 81
fg, 26
find, 43
for, 67, 68, 72, 81
function, 75, 76
gedit, 50
getops, 73
grep, 27, 28, 33, 43, 58, 59
head, 42, 42
history, 26
hostname, 81
HPC

nodes-free, 86
pbsnodes, 85
qdel, 83
qstat, 83, 85
qsub, 82
showstart, 83

info, 45, 64
kill, 76
less, 42
let, 45
ll, 27
logical AND (&&), 32
logical OR (||), 32
ls, 18, 20, 21, 27, 28, 30, 33, 34, 37,

37, 41
man, 28, 34
Mathematics, 45–47
mkdir, 18, 37, 81
more, 41, 42
mv, 38
nano, 52
pwd, 28, 31, 36, 64
qvnc, 14
read, 71–73
return codes, 31
reverse search, 25
rm, 38, 43
rsync, 35, 35, 36
scp, 12, 35
screen, 44, 45
sed, 71
seq, 68
set, 22
sleep, 76, 81
sort, 40
source, 62
special characters, 18

Index 94

ssh, 2, 3, 11, 34, 34, 81
syntax, 32–33
tail, 31, 32, 42, 45, 73
trap, 76
vi, 42, 53, 55
wget, 26
which, 27
while, 73
who, 43
xclock, 8, 11
xterm, 8

Commands, see command
Console, 2, 2–3, 21
Copying Directories, see Transferring

Files
Copying Files, see Transferring Files
CPU, see Central Processing Unit, 82

Editors, 50–55
gedit, 50, 50–51
Graphical, 50–51
Introduction, 50
nano, 52, 51–52
Shell, 51–55
vi, 42, 51, 53, 53–55

Escaping characters, 19

File
permission, 19, 20
Reading line for line, 68

File System, 19–21

Graphical Interface, 13
from a web browser, see Guacamole

Guacamole, 13, 13

Help, 28–29
Here Document, 39, 40
HPC, abv. High Performance Comput-

ing1, 50, 80, 83–86
Cancelling a job, 83–84
Getting job output, 84
Monitor job status, 83
queuing system, 80

scheduler, 80
Submit a job, 82
Submit File, 80–82
Viewing nodes, 85–86
Viewing queues, 85

Introduction, 18–19

Login, see SSH11

PBS, abv. Portable Batch System1, 80
Permissions, 19
Pipe, 33
Piping, 33
Portable Batch System, 80
PuTTY, 6, 50

Copy and Paste, 6
X11 Forwarding, 50

Regular Expressions, 58–60
Remote

Access, 2–13
Graphical Interface, 15
Guacamole, 15

Remote Host
Copying files, see Transferring Files
Login, see SSH

Secure Shell, see SSH
Session, 2
shebang, 62
Shell, 21

Alias, 26, 26–28
Auto Complete, 24–25
bash, 21
Commands, see command, 30–47
Environment, 21–28
Environmental Variables, 21–24
General Usage, 21–29
Logical Testing, 64, 64–67
case statement, 67
if statement, 66

Reading input, 68, 68–74
Scripting, 62–77, 80

95 Index

Shortcuts, see shortcut, 25–26
shortcut

auto complete, 24
background, 26
backgrounding a process, 26
cancel command, 25
cancel input, 25
clear screen, 25
exit, 25
history, 26
re-execute, 26
re-execute last, 26
reverse search, 25
scrolling through commands, 26
scrolling through output screens, 26

SSH, 11, 11
as a different user, 11
from Windows, see Windows Tools
with X Forwarding, 11

terminal, see Console
Transferring Files, 8–10

between Linux machines, 12–13
from Windows, 8
Linux to Linux, 12–13
Linux to Windows, 8
scp, 12–13
to Windows, 8
Windows to Linux, 8
WinSCP, 8

Variables, see Environmental Variables
VNC

abv. Virtual Network Computing,
see Guacamole

Windows Tools
PuTTY, 4, 4–8, 15, 50
Copy and Paste, 6
Saving session, 6–7
X11 Forwarding, 5

WinSCP, 8, 9
Xming, 7, 7–8, 50

WinSCP, see Windows Tools

X Forwarding, 11
to Windows, see Xming
through SSH, 11

Xming, see Windows Tools

97 Index

	Accessing Linux from a remote host
	Console
	Connecting from Windows
	PuTTY
	Xming
	Transferring Files

	Connecting from Linux or Apple Mac
	SSH
	Transferring Files

	Connecting from a Web Interface
	Apache Guacamole
	Using Guacamole

	Linux General Usage
	Introduction to Linux
	Case sensitivity and restrictions
	Special Characters

	File System and Permissions
	Bash Shell
	Shell Environment
	Variables
	Auto complete
	Shortcuts
	Alias

	Getting Help

	Linux Commands
	Commands Overview
	Introduction
	Command return codes
	Logical AND/OR testing

	Using output as input
	Command Examples
	ssh
	scp
	rsync
	cd
	pwd
	ls
	mkdir
	cp
	mv
	rm
	cat
	sort
	echo
	more
	less
	head
	tail
	cut
	find
	grep
	screen
	info

	Mathematical Arithmetic

	Editors
	Introduction
	Graphical Editors
	gedit

	Shell Editors
	nano
	vi

	Regular Expressions
	Overview
	Character sets
	Character classes
	Anchors
	Modifiers
	Examples

	Shell Scripting
	Overview
	Logical Testing
	If statement
	Case statement

	Loops
	For Loop
	While Loop

	Reading input from different sources
	Reading values from shell environment variables
	Working with substring parts of shell variables
	Reading input from the user
	Reading content from a file
	Reading parameters and options from shell

	Functions
	Trapping signals

	High Performance Computing
	Overview
	Creating a submit File
	Submitting a job
	Monitor the status of a job
	Cancelling a job
	Getting job output
	Viewing Queues
	Viewing nodes

	Bibliography
	Index

