Introduction to HPC

T: +27 51 401 9111 | E: info@ufs.ac.za | www.ufs.ac.za f UFSUV | VIFSweb | WIFSweb | Oufsuv

Inspiring excellence. Transforming lives.

UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE VRYSTAAT YUNIVESITHI YA FREISTATA

UFS INFORMATION AND COMMUNICATION TECHNOLOGY SERVICES (ICT SERVICES)

Contents

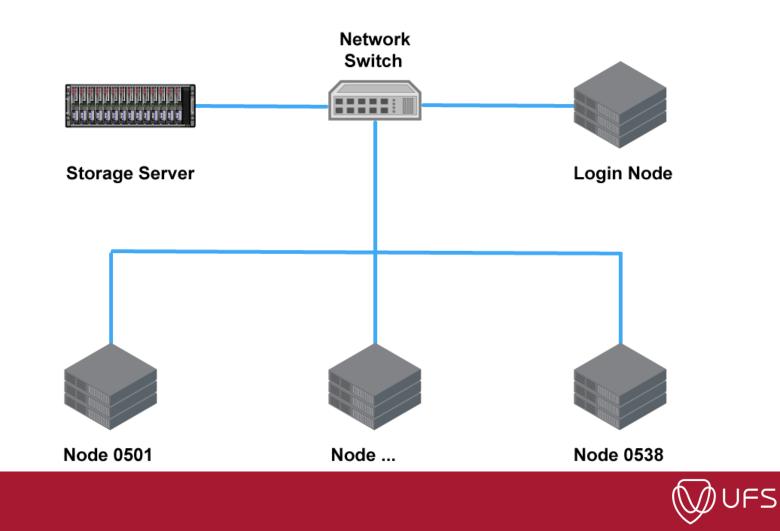
- Introduction
- Components of a HPC
- Parallelization
- Scalability
- HPC resources at the UFS

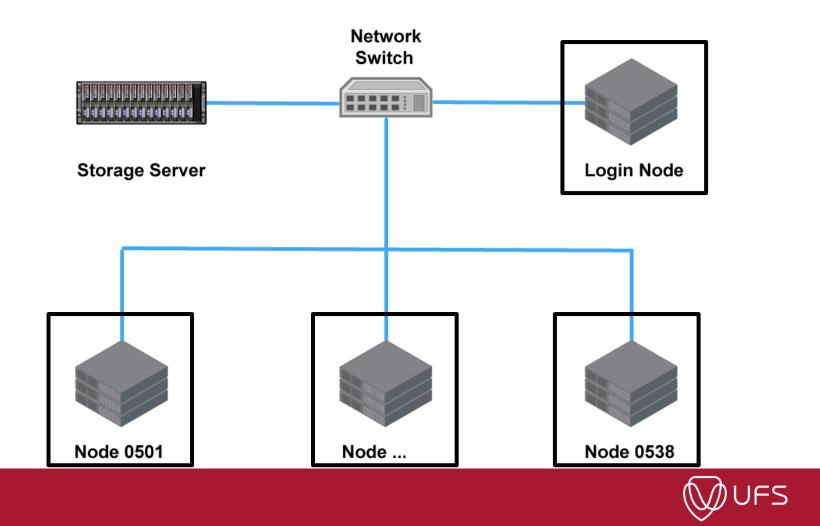
Introduction

Instructor

- Louis L. du Preez
- Research Specialist
 - Doctorate in Biochemistry
 - Molecular Modeling

- e-Research and High-Performance Computing
- ICT Services
- lategandupreezl@ufs.ac.za


High-Performance Computing


- Using distributed computing resources to perform computing
- Software and Hardware
- Long history (Since 1960s)
 - See https://doi.org/10.1145/503124.503129
- Abbreviation = HPC
- University to the Free State provides and funds HPC via ICT services to accelerate research

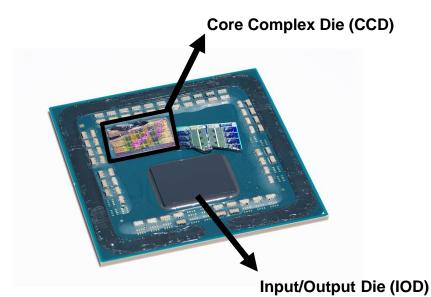
Components of a HPC

Node

- Basic constituent of an HPC
- Hardware
 - Commodity Server EPYC/Xeon CPUs, ECC RAM, 10 gigabit LAN
 - Can contain specific accelerators: GPU, Intel MIC, etc
- Software
 - Linux as OS
 - PBS (Portable Batch System)
 - OpenMP, OpenMPI, etc

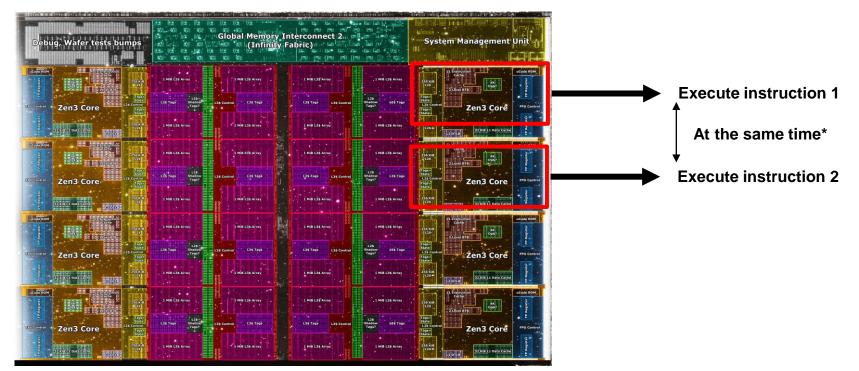
Node Types

- Login Node
 - Provide entry point for users into the HPC environment
 - No compute activities allowed on this node!
- Compute Node
 - Performs computation
 - Contains a defined number of resources
 - UFS HPC Gen5 compute node (purchased in ~2015):
 - 32 CPU cores (2 x 16 core cpus) / 64 Threads
 - 512 GB RAM


CPUs: Processors and Cores

- Modern processors = Multi-core processors
- Physical cores
 - Independent processing units
 - Example: AMD Ryzen 5600X : 6 core / 12 thread

AMD Ryzen 5600X layout



https://www.flickr.com/photos/130561288@N04/sets/72157716803186398/with/50618778453/

AMD Ryzen 5600X CCD

* Independent Instructions

CPUs: Processors and Cores

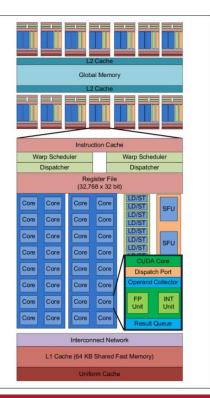
- Modern processors = Multi-core processors
- Physical cores
 - Independent processing units
 - Example: AMD Ryzen 5600X : 6 cores / 12 threads
- Threads
 - Hyper-threading (Intel) / SMT effectively splits 1 core into 2 threads
 - Effectively functions as 2 cores but share same resources > performance implications.
 - Cores, as reported by PBS = Threads / Always double-check

GPUs

- Pre-2006, GPUs → special purpose accelerators built to perform specific calculations related to manipulation of 3D/2D graphical images via a fixed rendering pipeline
- Design of GPUs drifted towards more general purpose computation which allowed more flexibility
 - Nvidia releases CUDA with the G80 (Geforce 8000) in 2007
- Typical image manipulation operations → Linear Algebra → Working with matrices.
- General purpose elements allows for application of GPUs to scientific problems

Accelerating molecular modeling applications with graphics processors

John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy, Leonardo G. Trabuco, Klaus Schulten 🔀


First published: 25 September 2007 | https://doi.org/10.1002/jcc.20829 | Citations: 516

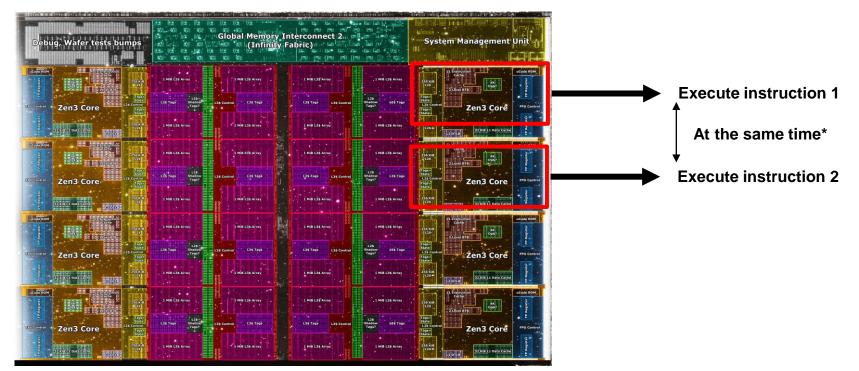
GPUs

- GPU design philosophy → Many smaller "cores" which performs specific operation types.
- I.e. they are not comparable in capability with a traditional CPU core.
 - Streaming processors terminology differs from vendor to vendor
- Great for computation of problems that use linear algebra i.e. Matrices and their manipulation, etc
- Example: Machine Learning and A.I. applications

Types of HPC infrastructures

- Homogenous vs Heterogenous
- Homogenous
 - One type of compute node
 - CPU-based was the standard
- Heterogenous
 - Mixture of types
 - CPU-only / GPU / Intel MIC
 - Recent advances in Machine Learning and A.I. > increase in GPU acceleration capability

Parallelization



Parallelization

- The act of performing a task or parts of a task at the same time.
- Example: Making coffee
 - You must make 10 cups of coffee
 - It takes ~ 2 minutes to make 1 cup of coffee
 - Thus $-10 \times 2 = -20$ minutes to complete the task.
 - If you add another person
 - It now takes ~10 minutes.
 - How did you parallelize the process? (Important)
 - You split the 10 cups of coffee task into two sub-tasks
 - 2 x (Make 5 cups of coffee)

AMD Ryzen 5600X CCD

* Independent Instructions

Parallelization – In HPC

- Software dependent
 - Be able to split a problem into smaller bits to distribute to the multiple processors

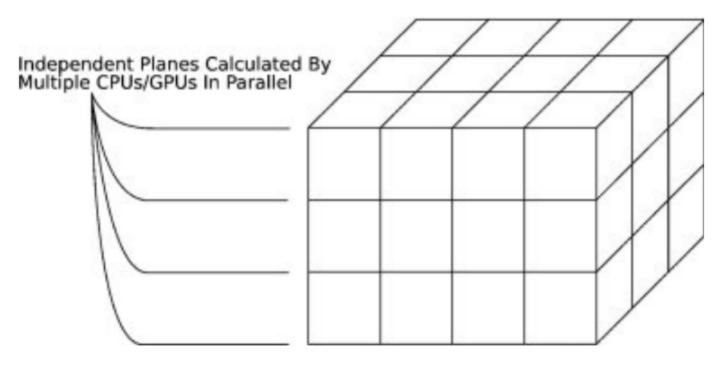
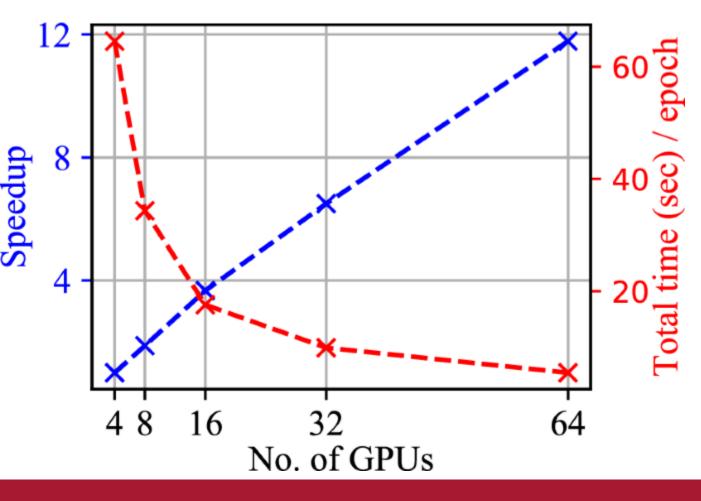


Figure 2. Decomposition of potential map into slices for parallel computation on multiple GPUs. $190 \times 91 \text{ mm} (600 \times 600 \text{ DPI}).$

Parallelization – In HPC

- Software dependent
 - Be able to split a problem into smaller bits to distribute to the multiple processors
 - Software uses :
 - OpenMP (threads)
 - OpenMPI/MPICH (nodes)
 - CUDA (NVIDIA GPU)
 - Nature of problem and how well the problem can be decomposed will affect scalability of the parallelization effort


Scalability

Scalability

- How the performance of a workload increases with the addition of computational resources.
- Back to our example of making coffee
 - Adding an additional person (node) → 20 cups of coffee are produced in half the time.
 - Example of linear scaling (2x the resources = 2x the speedup)

- Cosmology with HAL Deep Learning Cluster
- Training step for deep learning model
- Morphological classification of galaxies between spiral and elliptical classes
- Single V100 GPU → 2.1 hours
- 64 x V100 GPUs →
 2.7 minutes

Additional Resources

- UFS HPC:
 - <u>https://docs.hpc.ufs.ac.za</u>
- In-depth course on HPC (University of Iceland):
 - <u>https://www.youtube.com/watch?v=SH7qhC1tJmA&list=PLmJwSK7qduwVnlrIPjr</u> <u>fSn7QRcv3wlQj5</u>

